Federal Coordinating Lead Author
Ellen L. Mecray
National Oceanic and Atmospheric Administration

Chapter Lead
Lesley-Ann L. Dupigny-Giroux
University of Vermont

Chapter Authors
Mary D. Lemcke-Stampone
University of New Hampshire

Glenn A. Hodgkins
U.S. Geological Survey

Erika E. Lentz
U.S. Geological Survey

Katherine E. Mills
Gulf of Maine Research Institute

Erin D. Lane
U.S. Department of Agriculture

Rawlings Miller
WSP (formerly U.S. Department of Transportation Volpe Center)

Review Editor
Jayne F. Knott
University of New Hampshire

Technical Contributors are listed at the end of the chapter.

Recommended Citation for Chapter

On the Web: https://nca2018.globalchange.gov/chapter/northeast
Key Message 1

Changing Seasons Affect Rural Ecosystems, Environments, and Economies

The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions are already altering ecosystems and environments in ways that adversely impact tourism, farming, and forestry. The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow.

Key Message 2

Changing Coastal and Ocean Habitats, Ecosystems Services, and Livelihoods

The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification threaten these services. The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase.

Key Message 3

Maintaining Urban Areas and Communities and Their Interconnectedness

The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate.
Key Message 4

Threats to Human Health

Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise. These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life. Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities.

Key Message 5

Adaptation to Climate Change Is Underway

Communities in the Northeast are proactively planning and implementing actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges. Experience since the last assessment provides a foundation to advance future adaptation efforts.

Executive Summary

The distinct seasonality of the Northeast’s climate supports a diverse natural landscape adapted to the extremes of cold, snowy winters and warm to hot, humid summers. This natural landscape provides the economic and cultural foundation for many rural communities, which are largely supported by a diverse range of agricultural, tourism, and natural resource-dependent industries (see Ch. 10: Ag & Rural, Key Message 4). The recent dominant trend in precipitation throughout the Northeast has been towards increases in rainfall intensity, with increases in intensity exceeding those in other regions of the contiguous United States. Further increases in rainfall intensity are expected, with increases in total precipitation expected during the winter and spring but with little change in the summer. Monthly precipitation in the Northeast is projected to be about 1 inch greater for December through April by end of century (2070–2100) under the higher scenario (RCP8.5).

Ocean and coastal ecosystems are being affected by large changes in a variety of climate-related environmental conditions. These ecosystems support fishing and aquaculture, tourism and recreation, and coastal communities. Observed and projected increases in temperature, acidification, storm frequency and intensity, and sea levels are of particular concern for coastal and ocean ecosystems, as well as local communities and their interconnected social and economic systems. Increasing temperatures and changing seasonality on the Northeast Continental Shelf have affected marine organisms and the ecosystem in various ways. The warming trend experienced in the Northeast Continental Shelf has been associated with many fish and invertebrate species moving northward and to greater depths. Because of the diversity of the Northeast’s coastal landscape, the impacts...
from storms and sea level rise will vary at different locations along the coast.12,13

Northeastern cities, with their abundance of concrete and asphalt and relative lack of vegetation, tend to have higher temperatures than surrounding regions due to the urban heat island effect. During extreme heat events, nighttime temperatures in the region’s big cities are generally several degrees higher than surrounding regions, leading to higher risk of heat-related death. Urban areas are at risk for large numbers of evacuated and displaced populations and damaged infrastructure due to both extreme precipitation events and recurrent flooding, potentially requiring significant emergency response efforts and consideration of a long-term commitment to rebuilding and adaptation, and/or support for relocation where needed. Much of the infrastructure in the Northeast, including drainage and sewer systems, flood and storm protection assets, transportation systems, and power supply, is nearing the end of its planned life expectancy. Climate-related disruptions will only exacerbate existing issues with aging infrastructure. Sea level rise has amplified storm impacts in the Northeast (Key Message 2), contributing to higher surges that extend farther inland, as demonstrated in New York City in the aftermath of Superstorm Sandy in 2012.14,15,16 Service and resource supply infrastructure in the Northeast is at increasing risk of disruption, resulting in lower quality of life, economic declines, and increased social inequality.17 Loss of public services affects the capacity of communities to function as administrative and economic centers and triggers disruptions of interconnected supply chains (Ch. 16: International, Key Message 1).

Increases in annual average temperatures across the Northeast range from less than 1°F (0.6°C) in West Virginia to about 3°F (1.7°C) or more in New England since 1901.18,19 Although the relative risk of death on very hot days is lower today than it was a few decades ago, heat-related illness and death remain significant public health problems in the Northeast.20,21,22,23 For example, a study in New York City estimated that in 2013 there were 133 excess deaths due to extreme heat.24 These projected increases in temperature are expected to lead to substantially more premature deaths, hospital admissions, and emergency department visits across the Northeast.25,26,27,28,29 For example, in the Northeast we can expect approximately 650 additional premature deaths per year from extreme heat by the year 2050 under either a lower (RCP4.5) or higher (RCP8.5) scenario and from 960 (under RCP4.5) to 2,300 (under RCP8.5) more premature deaths per year by 2090.29

Communities, towns, cities, counties, states, and tribes across the Northeast are engaged in efforts to build resilience to environmental challenges and adapt to a changing climate. Developing and implementing climate adaptation strategies in daily practice often occur in collaboration with state and federal agencies (e.g., New Jersey Climate Adaptation Alliance 2017, New York Climate Clearinghouse 2017, Rhode Island STORMTOOLS 2017, EPA 2017, CDC 201530,31,32,33,34). Advances in rural towns, cities, and suburban areas include low-cost adjustments of existing building codes and standards. In coastal areas, partnerships among local communities and federal and state agencies leverage federal adaptation tools and decision support frameworks (for example, NOAA’s Digital Coast, USGS’s Coastal Change Hazards Portal, and New Jersey’s Getting to Resilience). Increasingly, cities and towns across the Northeast are developing or implementing plans for adaptation and resilience in the face of changing climate (e.g., EPA 2017). The approaches are designed to maintain and enhance the everyday lives of residents and promote economic development. In some cities, adaptation planning has been used to respond to present and future challenges in the built environment. Regional efforts have recommended changes in design standards when building, replacing, or retrofitting infrastructure to account for a changing climate.
Lengthening of the Freeze-Free Period

These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher scenario (RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher scenario. By the middle of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much as two weeks under the lower scenario and by two to three weeks under the higher scenario. By the end of the century, the freeze-free period is expected to increase by at least three weeks over most of the region. From Figure 18.3 (Source: adapted from Wolfe et al. 2018).
Coastal Impacts of Climate Change

Coastal marshes, uplands, forests, and estuaries provide critical habitat and ecosystems services throughout the Northeast.

Present

The Region’s barrier islands and beaches support recreational areas, habitats, and cultural areas of value. Much of the Northeast’s open ocean coast is backed by hard structures and/or development.

Forests, uplands, and marshes will either adapt to changing conditions by migrating landward or will become submerged.

Bluffs will erode, and barrier islands and beaches will migrate landward, erode, or narrow, particularly where sediment supply is limited.

Possible Future

Barrier islands are likely to erode and narrow, especially where sediment supply is limited. Coastal erosion and flooding will require ongoing efforts to protect or adapt existing development.

(top) The northeastern coastal landscape is composed of uplands and forested areas, wetlands and estuarine systems, mainland and barrier beaches, bluffs, headlands, and rocky shores, as well as developed areas, all of which provide a variety of important services to people and species. (bottom) Future impacts from intense storm activity and sea level rise will vary across the landscape, requiring a variety of adaptation strategies if people, habitats, traditions, and livelihoods are to be protected. *From Figure 18.7 (Source: U.S. Geological Survey).*
Background

The Northeast region is characterized by four distinct seasons and a diverse landscape that is central to the region’s cultural identity, quality of life, and economic success. It is both the most heavily forested and most densely populated region in the country. Residents have ready access to beaches, forests, and other natural areas and use them heavily for recreation. Colorful autumn foliage, winter recreation, and summer vacations in the mountains or at the beach are all important parts of the Northeast’s cultural identity, and this tourism contributes billions of dollars to the regional economy. The seasonal climate, natural systems, and accessibility of certain types of recreation are threatened by declining snow and ice, rising sea levels, and rising temperatures. By 2035, and under both lower and higher scenarios (RCP4.5 and RCP8.5), the Northeast is projected to be more than 3.6°F (2°C) warmer on average than during the preindustrial era. This would be the largest increase in the contiguous United States and would occur as much as two decades before global average temperatures reach a similar milestone.\(^{36}\)

The region’s oceans and coasts support a rich maritime heritage and provide an iconic landscape, as well as economic and ecological services. Highly productive marshes,\(^{37,38}\) fisheries,\(^{39,40}\) ecosystems,\(^{41,42}\) and coastal infrastructure\(^{43,44}\) are sensitive to changing environmental conditions, including shifts in temperature, ocean acidification, sea level, storm surge, flooding, and erosion. Many of these changes are already affecting coastal and marine ecosystems, posing increasing risks to people, traditions, infrastructure, and economies (e.g., Colburn et al. 2016\(^{45}\)). These risks are exacerbated by increasing demands on these ecosystems to support human use and development. The Northeast has experienced some of the highest rates of sea level rise\(^{46}\) and ocean warming\(^{39}\) in the United States, and these exceptional increases relative to other regions are projected to continue through the end of the century.\(^{47,48,49,50}\)

The Northeast is quite varied geographically, with a wide spectrum of communities including densely populated cities and metropolitan regions and relatively remote hamlets and villages (Figure 18.1). Rural and urban areas have distinct vulnerabilities, impacts, and adaptation responses to climate change.\(^{31,52}\) The urbanized parts of the Northeast are dependent on the neighboring rural areas’ natural and recreational services, while the rural communities are dependent on the economic vitality and wealth-generating capacity of the region’s major cities. Rural and urban communities together are under increasing threat of climate change and the resulting impacts, and adaptation strategies reveal their interdependence and opportunities for successful climate resilience.\(^{51,52}\) Rural–urban linkages\(^{53,54,55}\) in the region could also be altered by climate change impacts.

In rural areas, community identity is often built around the prominence of small, multigenerational, owner-operated businesses and the natural resources of the local area. Climate variability can affect human migration patterns\(^{36}\) and may change flows into or out of the Northeast as well as between rural and urban locations. Published research in this area, however, is limited. The Northeast has long been losing residents to other regions of the country.\(^{57}\) Droughts and flooding can adversely affect ecosystem function, farm economic viability, and land use. Although future projections of major floods remain ambiguous, more intense precipitation events (Ch. 2: Climate, KM 6)\(^{58}\) have increased the risk...
of some types of inland floods, particularly in valleys, where people, infrastructure, and agriculture tend to be concentrated. With little redundancy in their infrastructure and, therefore, limited economic resilience, many rural communities have limited ability to cope with climate-related changes.

Population Density

![Population Density Map](image)

Figure 18.1: A satellite mosaic overlaid with primary roads and population density highlights the diverse characteristics of the region in terms of settlement patterns, interconnections among population centers of varying sizes, and variability in relief across the ocean shelf. Sources: U.S. Department of Transportation, U.S. Geological Survey, and ERT, Inc.
Residents in urban areas face multiple climate hazards, including temperature extremes, episodes of poor air quality, recurrent waterfront and coastal flooding, and intense precipitation events that can lead to increased flooding on urban streams. These physical changes may lead to large numbers of evacuated and displaced populations and damaged infrastructure; sustaining communities may require significant investment and planning to provide emergency response efforts, a long-term commitment to rebuilding and adaptation, and support for relocation. Underrepresented communities, such as the poor, elderly, language-isolated, and recent immigrants, are more vulnerable due to their limited ability to prepare for and cope with extreme weather and climate events. Service infrastructure in the Northeast is at increasing risk of disruption, resulting in lower quality of life, economic declines, and enhanced social inequality. Interdependencies across critical infrastructure sectors such as water, energy, transportation, and telecommunication (and related climate security issues) can lead to cascading failures during extreme weather and climate-related disruptions. The region’s high density of built environment sites and facilities, large number of historic structures, and older housing and infrastructure compared to other regions suggest that urban centers in the Northeast are particularly vulnerable to climate shifts and extreme weather events. For example, because much of the historical development of industry and commerce in New England occurred along rivers, canals, coasts, and other bodies of water, these areas often have a higher density of contaminated sites, waste management facilities, and petroleum storage facilities that are potentially vulnerable to flooding. As a result, increases in flood frequency or severity could increase the spread of contaminants into soils and waterways, resulting in increased risks to the health of nearby ecosystems, animals, and people—a set of phenomena well documented following Superstorm Sandy.

The changing climate of the Northeast threatens the health and well-being of residents through environmental changes that lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, higher risk of infectious diseases, lower quality of life, and increased costs associated with healthcare utilization. Health impacts of climate change vary across people and communities of the Northeast and depend on social, socioeconomic, demographic, and societal factors; community adaptation efforts; and underlying individual vulnerability (see Key Message 5) (see also Ch. 28: Adaptation).

Maintaining functioning, sustainable communities in the face of climate change requires effective adaptation strategies that anticipate and buffer impacts, while also enabling communities to capitalize upon new opportunities. Many northeastern cities already have or are rapidly developing short-term and long-term plans to mitigate climate effects and to plan for efficient investments in sustainable development and long-term adaptation strategies. Although timely adaptation to climate-related impacts would help reduce threats to people’s health, safety, economic well-being, and ways of life, changes to those societal elements will not be avoided completely.
Key Message 1

Changing Seasons Affect Rural Ecosystems, Environments, and Economies

The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions are already altering ecosystems and environments in ways that adversely impact tourism, farming, and forestry. The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow.

The distinct seasonality of the Northeast’s climate supports a diverse natural landscape adapted to the extremes of cold, snowy winters and warm to hot, humid summers. This natural landscape provides the economic and cultural foundation for many rural communities, which are largely supported by a diverse range of agricultural, tourism, and natural resource-dependent industries (Ch. 10: Ag & Rural, KM 4). The outdoor recreation industry contributes nearly $150 billion in consumer spending to the Northeast economy and supports more than one million jobs across the region. Additionally, agriculture, fishing, forestry, and related industries together generate over $100 billion in economic activity annually, supporting more than half a million jobs in production and processing region-wide. Projected changes in the Northeast’s seasons will continue to affect terrestrial and aquatic ecosystems, forest productivity, agricultural land use, and other resource-based industries. Alpine, freshwater aquatic, and certain forest habitats are most at risk. Without efforts to mitigate climate change, warming winters and earlier spring conditions under a higher scenario (RCP8.5) will affect native ecosystems and the very character of the rural Northeast.

Seasonal differences in Northeast temperature have decreased in recent years as winters have warmed three times faster than summers. By the middle of this century, winters are projected to be milder still, with fewer cold extremes, particularly across inland and northern portions of the Northeast. This will likely result in a shorter and less pronounced cold season with fewer frost days and a longer transition out of winter into the growing season. Under the higher scenario (RCP8.5), the trend of decreasing seasonality continues for the northern half of the region through the end of the century, but by then summer temperatures across the Mid-Atlantic are projected to rise faster than those in winter.

A Changing Winter–Spring Transition

Forests are already responding to the ongoing shift to a warmer climate, and changes in the timing of leaf-out affect plant productivity, plant–animal interactions, and other essential ecosystem processes. Warmer late-winter and early-spring temperatures in the Northeast have resulted in trends towards earlier leaf-out and blooming, including changes of 1.6 and 1.2 days per decade, respectively, for lilac and honeysuckle (Ch. 7: Ecosystems, Figure 7.3). The increase in growing season length is partially responsible for observed increases in forest growth and carbon sequestration. While unusual winter or early-spring warmth has caused plants to start growing and emerge from winter dormancy earlier in the spring, the increased vulnerability of species to subsequent cold spells is yet unknown. Early emergence from winter dormancy causes plants to lose their tolerance to cold temperatures and risk damage by temperatures they would otherwise tolerate. Early budbreak followed by hard freezes has led to widespread loss of fruit.
crops and reduced seasonal growth of native tree species in the Northeast.35,73

Shifting seasonality can also negatively affect the health of forests (Ch. 6: Forests, KM 1) and wildlife, thereby impacting the rural industries dependent upon them. Warmer winters will likely contribute to earlier insect emergence74 and expansion in the geographic range and population size of important tree pests such as the hemlock woolly adelgid, emerald ash borer, and southern pine beetle.75,76,77 Increases in less desired herbivore populations are also likely, with white-tailed deer and nutria (exotic South American rodents) already being a major concern in different parts of the region.78 According to State Farm Insurance,79 motorists in West Virginia and Pennsylvania are already the first and third group of claimants most likely to file an insurance claim that is deer-related. Erosion from nutria feeding in lower Eastern Shore watersheds of Maryland has resulted in widespread conversion of marsh to shallow open water, changing important ecosystems that can buffer against the adverse impacts from climate change.80 Species such as moose, which drive a multimillion-dollar tourism industry, are already experiencing increased parasite infections and deaths from ticks.81,82,83 Warmer spring temperatures are associated with earlier arrivals of migratory songbirds,84 while birds dependent upon spruce–fir forests in the northern and mountainous parts of the region are already declining and especially vulnerable to future change.85 Northern and high-elevation tree species such as spruce and fir are among the most vulnerable to climate change in the Northeast.70,86,87

A nutria shows off its signature orange teeth. These large South American rodents are already a major concern in parts of the Northeast. Photo credit: ©Jason Erickson/iStock/Getty Images Plus.
Challenges for Natural Resource-Based Industries

Shorter, more moderate winters will present new challenges for rural industries. Poor surface and road conditions or washout have the potential to limit future logging operations, which need frozen or snow-covered soils to meet environmental requirements for winter operations. Maple syrup production is linked to climate through potential shifts in sugar maple habitat, tapping season timing and duration, and the quality of both the trees and sap. Climate change is making sugar maple tapping more challenging by increasing variability within and between seasons. Research into how the industry can adapt to these changes is ongoing. With changes in weather and ecology come shifts in the cultural relationships to seasons as they have historically existed. Indigenous women from across these northeastern forests have come together to protect and sustain cultural traditions of the land they call Maple Nation. These climate impacts not only threaten the maple tree itself but also the seeds, soil, water, plants, and cultural lifeways that Indigenous peoples and tribal nations in the region associate with them.

On the other hand, the impacts of warming on forests and ecosystems during the summer and autumn are less well understood. In the summer, flowering in many agricultural crops and tree fruits is regulated in part by nighttime temperature, and growers risk lower yields as these temperatures rise. Warmer autumn temperatures influence processes such as leaf senescence (the change in leaf color as photosynthesis ceases), fruit ripening, insect phenology, and the start of bird migration and animal hibernation. October temperatures are the best predictor of leaf senescence in the northern hemisphere, but other climatic factors can also shift the timing of autumn processes. Agricultural drought can advance leaf coloring and leaf drop, while abundant soil moisture can delay senescence. Early frost events or strong winds can also result in sudden leaf senescence and loss. Many deciduous trees are projected to experience an overall increase in their amount of autumn foliage color.

As Northeast winters warm, scenarios project a combination of less early winter snowfall and earlier snowmelt, leading to a shorter snow season. The proportion of winter precipitation falling as rain has already increased and will likely continue to do so in response to a northward shift in the snow–rain transition zone projected under both lower and higher scenarios (RCP4.5 and RCP8.5). The shift in precipitation type and fewer days below freezing are expected to result in fewer days with snow on the ground; decreased snow depth, water equivalent, and extent; an earlier snowmelt; and less lake ice. Warming during the winter–spring transition has already led to earlier snowmelt–related runoff in areas of the Northeast with substantial snowpack (Figure 18.2). Earlier snowmelt–related runoff and lower spring peak streamflows in these areas are expected in the 2041–2095 period compared with the 1951–2005 period.
The Northeast winter recreation industry is an important economic resource for rural areas, supporting approximately 44,500 jobs and generating between $2.6–$2.7 billion in revenue annually. Like other outdoor tourism industries, it is strongly influenced by weather and climate, making it particularly vulnerable to climate change. Even under the lower scenario (RCP4.5), the average length of the winter recreation season and the number of recreational visits are projected to decrease by mid-century. Under the same scenario, lost time for snowmaking is expected to delay the start of the ski season across southern areas, potentially impacting revenues during the winter holiday season. Activities that rely on natural snow and ice cover are projected to remain economically viable in only far northern parts of the region by end of century under the higher scenario (RCP8.5).

Figure 18.2: This map of part of the Northeast region shows consistently earlier snowmelt-related streamflow timing for rivers from 1960 to 2014. Each symbol represents the change for an individual river over the entire period. Changes in the timing of snowmelt potentially interfere with the reproduction of many aquatic species and impact water-supply reservoir management because of higher winter flows and lower spring flows. The timing of snowmelt-related streamflow in the Northeast is sensitive to small changes in air temperature. The average winter–spring air temperature increase of 1.6°F in the Northeast from 1940 to 2014 is thought to be the cause of average earlier streamflow timing of 7.7 days. The timing of snowmelt-related streamflow is a valuable long-term indicator of winter–spring changes in the Northeast. Source: adapted from Dudley et al. 2017; Digital Elevation Model CGIAR–CSI (CGIAR Consortium for Spatial Information). Reprinted with permission from Elsevier.
Sensitivity to projected changes in winter climate varies geographically, and venues are adapting by investing in artificial snowmaking, opening higher-elevation trails, and offering a greater range of activities and services. As the margin for an economically viable winter recreation season (a season with more than 100 days for skiing; more than 50 for snowmobiling) shifts northward and toward higher elevations, some affected areas will be able to extend their seasons with artificial snowmaking. However, the capacity of some vulnerable southern and low-elevation locations to adapt in the long term is expected to be limited by warming nighttime temperatures. Markets farther north may benefit from a greater share of regional participation depending on recreationist preferences like travel time and perceived snow cover conditions informed by local weather, referred to as the backyard effect.

Intense Precipitation

The recent dominant trend in precipitation throughout the Northeast has been towards increases in rainfall intensity, with recent increases in intensity exceeding those in other regions in the contiguous United States. Further increases in rainfall intensity are expected, with increases in precipitation expected during the winter and spring with little change in the summer. Monthly precipitation in the Northeast is projected to be about 1 inch greater for December through April by end of century (2070–2100) under the higher scenario (RCP8.5).

Studies suggest that Northeast agriculture, with nearly $21 billion in annual commodity sales, will benefit from the changing climate over the next half-century due to greater productivity over a longer growing season (Figure 18.3) (see also Ch. 10: Ag & Rural). However, excess moisture is already a leading cause of crop loss in the Northeast. Recent and projected increases in precipitation amount, intensity, and persistence indicate increasing impacts on agricultural operations. Increased precipitation can result in soil compaction, delays in planting, and reductions in the number of days when fields are workable. If the trend in the frequency of heavy rainfall prior to the last frost continues, overly wet fields could potentially prevent Northeast farmers from taking full advantage of an earlier spring. Increased soil erosion and agricultural runoff—including manure, fertilizer, and pesticides—are linked to excess nutrient loading of water bodies as well as possible food safety or public health issues from food and waterborne infections. Warmer winters are likely to increase livestock productivity in the Northeast but are expected to also increase pressure from weeds and pests, demand for pesticides, and the risk of human health effects from increased chemical exposures.

The projected changes in precipitation intensity and temperature seasonality would also affect streams and the biological communities that live in them. Freshwater aquatic ecosystems are vulnerable to changes in streamflow, higher temperatures, and reduced water quality. Such ecosystems are especially vulnerable to increases in high flows, decreases in low flows, and the timing of snowmelt. The impact of heavy precipitation on streamflows partly depends upon watershed conditions such as prior soil moisture and snowpack conditions, which vary throughout the year. Although the annual minimum streamflows have increased during the last century, late-summer warming could lead to decreases in the minimum streamflows in the late summer and early fall by mid-century.
Species that are particularly vulnerable to temperature and flow changes include stream invertebrates, freshwater mussels, amphibians, and coldwater fish.66,131,143 For example, a recent study of the habitat suitable for dragonflies and damselflies (species that are a good indicator of ecosystem health along rivers) in the Northeast projected, under both the lower and higher scenarios (RCP4.5 and RCP8.5), habitat declines of 45%–99% by 2080, depending on the species.144 Other particularly vulnerable groups include species with water-dependent habitats, such as salamanders and coldwater fish.66,145 Increasing temperatures within freshwater streams threaten coldwater fisheries across northern New England and south through the Appalachian Mountains. A decrease in recreational fishing revenue is expected by end of this century under a higher scenario (RCP8.5) with the loss of coldwater habitat.29,131,146

\begin{center}
\textbf{Lengthening of the Freeze-Free Period}
\end{center}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{freeze_freeze.png}
\caption{These maps show projected shifts in the date of the last spring freeze (left column) and the date of the first fall freeze (right column) for the middle of the century (as compared to 1979–2008) under the lower scenario (RCP4.5; top row) and the higher scenario (RCP8.5; middle row). The bottom row shows the shift in these dates for the end of the century under the higher scenario. By the middle of the century, the freeze-free period across much of the Northeast is expected to lengthen by as much as two weeks under the lower scenario and by two to three weeks under the higher scenario. By the end of the century, the freeze-free period is expected to increase by at least three weeks over most of the region. Source: adapted from Wolfe et al. 2018.25}
\end{figure}
Key Message 2

Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods

The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification threaten these services. The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase.

Ocean and coastal ecosystems are being affected by large changes in a variety of climate-related environmental conditions. These ecosystems support fishing and aquaculture, tourism and recreation, and coastal communities. They also provide important ecosystem services (benefits to people provided by the functions of various ecosystems), including carbon sequestration, wave attenuation, and fish and shorebird habitats. Observed and projected increases in temperature, acidification, storm frequency and intensity, and sea levels are of particular concern for coastal and ocean ecosystems, as well as local communities and their interconnected social and economic systems (Box 18.1).

Change in Sea Surface Temperature on the Northeast Continental Shelf

Figure 18.4: The figure shows annual average sea surface temperature (SST) differences from the 1982–2011 average (black dots and line). Over the period 1982–2016, sea surface temperature on the Northeast Continental Shelf has warmed at a rate of 0.06°F (0.033°C) per year (red dashed line). This rate is three times faster than the 1982–2013 global SST warming rate of 0.018°F (0.01°C) per year (gray dotted line). The inset shows Northeast Continental Shelf seasonal SST differences from the 1982–2011 average as five-year rolling means for summer (July, August, September; red line) and winter (January, February, March; blue line). These seasons are centered on the warmest (summer) and coolest (winter) months for Northeast Shelf SSTs. Both seasons have warmed over the time period, but the summer warming rate has been stronger. Source: Gulf of Maine Research Institute.
Ocean Warming

Ocean and coastal temperatures along the Northeast Continental Shelf have warmed by 0.06°F (0.03°C) per year over the period 1982–2016 (Figure 18.4), which is three times faster than the 1982–2013 global average rate of 0.018°F (0.01°C) per year.30 Over the last decade (2007–2016), the regional warming rate has been four times faster than the long-term trend, with temperatures rising 0.25°F (0.14°C) per year (Figure 18.4). Variability in ocean temperatures over the Northeast Continental Shelf (see Figure 18.1 for the location) has been related to the northern position of the Gulf Stream, the volume of water entering from the Labrador Current, and large-scale background warming of the oceans.39,48,152,153 In addition to this warming trend, seasonality is also changing. Warming has been strongest during the summer months, and the duration of summer-like sea surface temperatures has expanded.154 In parts of the Gulf of Maine, the summer-like season lengthened by two days per year since 1982, largely due to later fall cooling; the summer-like period expanded less rapidly (about 1 day per year) in the Mid-Atlantic, primarily due to earlier spring warming.154

Increasing temperatures and changing seasonality on the Northeast Continental Shelf have affected marine organisms and the ecosystem in various ways (Ch. 7: Ecosystems, KM 1; Ch. 9: Oceans). Seasonal ocean temperature changes have shifted characteristics of the spring phytoplankton blooms158 and the timing of fish and invertebrate reproduction,163,164 migration of marine fish that return to freshwater to spawn,165,166 and marine fisheries.155 As the timing of ecosystem conditions and biological events shifts, interactions between species and human activities such as fishing or whale watching will likely be affected.42,155,163,166,167,168 These changes have the potential to affect economic activity and social features of fishing communities, working waterfronts, travel and tourism, and other natural resource-dependent local economies.

The warming trend experienced in the Northeast Continental Shelf has been associated with many fish and invertebrate species moving northward and to greater depths (Ch. 1: Overview, Figure 1.2h).7,8,9,10,11 As these shifts have occurred, communities of animals present in a given area have changed substantially.169 Species interactions can be affected if species do not shift at the same rate; generally, species groups appear to be moving together,10 but overlap between pairs of specific species has changed.42

Rising ocean temperatures have also affected the productivity of marine populations. Species at the southern extent of their range, such as northern shrimp, surf clams, and Atlantic cod, are declining as waters warm,39,170,171 while other species, such as black sea bass, are experiencing increased productivity.11 Some species, such as American lobster and surf clam, have declined in southern regions where temperatures have exceeded their biological tolerances but have increased in northern areas as warming waters have enhanced their productivity.40,171,172,173 The productivity of some harvested and cultured species may also be indirectly influenced by changing levels of marine pathogens and diseases. For example, increasing prevalence of shell disease in lobsters and several pathogens in oysters have been associated with rising water temperatures;174,175 other pathogens that infect shellfish pose risks to human health (see Key Message 4).

Temperature-related changes in the distribution and productivity of species are affecting fisheries. Some fishermen now travel farther to catch certain species176 or target new species that are becoming more prevalent as waters warm.155 However, these types of responses do not always keep pace with ecosystem change due to constraints associated with markets, shoreside infrastructure, and regulatory limits such as access to quota licenses or permits.177,178,179 In addition, stock assessment and fishery management processes do not explicitly account for temperature...
influences on the managed species. In the case of Gulf of Maine cod, rising temperatures have been associated with changes in recruitment, growth, and mortality; failure to account for declining productivity as a result of warming led to catch advice that allowed for overfishing on the stock. Proactive conservation and management measures can support climate resilience of fished species. For example, long-standing industry and management measures to protect female and large lobsters have supported the growth of the Gulf of Maine–Georges Bank stock.

Box 18.1: Ocean Heat Wave Provides Glimpse of Climate Future

In 2012, sea surface temperatures on the Northeast Continental Shelf rose approximately 3.6°F (2°C) above the 1982–2011 average. This departure from normal was similar in magnitude to the changes projected for the end of the century under the higher scenario (RCP8.5) and represented the largest, most intense warm water event ever observed in the Northwest Atlantic Ocean (Ch. 9: Oceans). This heat wave altered seasonal cycles of phytoplankton and zooplankton, brought Mid-Atlantic fish species into the Gulf of Maine, and altered the occurrence of North Atlantic right whales in the Gulf of Maine. Commercial fisheries were also affected. A fishery for squid developed quickly along the coast of Maine, but the New England lobster fishery was negatively affected. Specifically, early spring warming triggered an early start of the fishing season, creating a glut of lobster in the supply chain and leading to a severe price collapse. During 2012, the dockside price for lobster hit its lowest level in the past decade and dropped from an average per-pound value of $3.62 for June and July 2000–2011 to just $2.37 in those months in 2012. The experience during the 2012 ocean heat wave revealed vulnerabilities in the lobster industry and prompted a variety of adaptive responses, such as expanding processing capacity and further developing domestic and international markets in an attempt to buffer against similar industry impacts in the future. Although an outlier when compared with our current climate, the ocean temperatures in 2012 were well within the range projected for the region by the end of the century under the higher scenario (RCP8.5). The 2012 ocean heat wave provided a glimpse of impacts affecting ecological and social systems, and experiences during this event can serve as a stress test to guide adaptation planning in years to come (akin to 2015 in the Northwest) (see Ch. 24: Northwest, Box 24.7).

Ocean Heat Wave of 2012

Figure 18.5: The map shows the difference between sea surface temperatures (SST) for June–August 2012 in the Northwest Atlantic and the average values for those months in 1982–2011. While ocean temperatures during 2012 were exceptionally high compared to the current climate, they were within the range of end-of-century temperatures projected for the region under the higher scenario (RCP8.5). This heat wave affected the Northeast Continental Shelf ecosystem and fisheries, and similar extreme events are expected to become more common in the future (Ch. 9: Oceans). Source: adapted from Mills et al. 2013. Reprinted with permission from Elsevier.
as waters warmed, but the lack of these measures in southern New England exacerbated declines in that stock as temperatures increased.40

Ocean Acidification

In addition to warming, coastal waters in the Northeast, particularly in the Gulf of Maine, are sensitive to the effects of ocean acidification because they have a low capacity for maintaining stable pH levels.181,182 These waters are particularly vulnerable to acidification due to hypoxia (low-oxygen conditions)183 and freshwater inputs, which are expected to increase as climate change progresses.142,181,184 At the coastal margins, acidification is exacerbated by nutrient loading from land-based runoff and atmospheric deposition during heavy rainfall events. When added to the system, these nutrients promote the growth of algae that release carbon dioxide, which contributes to acidification, as they decay.185

Fisheries and aquaculture rely on shell-forming organisms that can suffer in more acidic conditions (Ch. 9: Oceans).181,182,186 Some of the most valuable wild- and culture-based fisheries in the region harvest shelled organisms—including lobsters, scallops, blue crabs, oysters, surf clams, and mussels.5 To date, there have been few studies of how local populations and different life stages will be affected by ocean acidification,182 but actions taken by industry to counter the potential negative impacts are emerging. For example, when an oyster hatchery in Maine experienced low survival rates of larval oysters following exposure to low pH water during large runoff events, it collaborated with scientists to develop systems to monitor and control carbonate conditions in the facility (Ch. 9: Oceans).187

Future Projections of Ocean Warming and Acidification

Climate projections indicate that in the future, the ocean over the Northeast Continental Shelf will experience more warming than most other marine ecosystems around the world.48,49 Continued warming and acidification are expected to further affect species and fisheries in the region. Future projections indicate that declines in the density of a zooplankton species, *Calanus finmarchicus*—an important food source for many fish and whales in the Northeast Shelf region—will occur as waters continue to warm through the end of the century.188 Northward species distribution trends are projected to continue as ocean waters warm further.189 A species vulnerability assessment indicated that approximately 50% of the commercial, forage, and protected fish and invertebrate species on the Northeast Continental Shelf will be highly or very highly vulnerable to climate change through 2050 under the higher scenario (RCP8.5).143 In general, species in the southern portion of the region are expected to remain stable through mid-century, but many species in the northern portion are expected to be negatively affected by warming and acidification over that timeframe.143,186 Species population models predicted forward under future ocean conditions also indicate declines of species that support some of the most valuable and iconic fisheries in the Northeast, including Atlantic cod,39,190 Atlantic sea scallops,191 and American lobster.40 In addition, species that are already endangered and federally protected in the Northeast—such as Atlantic sturgeon, Atlantic salmon, and right whales—are expected to be further threatened by climate change.192,193,194,195
Changes in Distribution and Abundance of Marine Species

Figure 18.6: The figure shows changes over time in geographic distribution (top panel) and biomass (four bottom panels) for various marine species along the Northeast Shelf. As waters in the region have warmed, the spatial distributions of many fish species have been shifting northward, while population trends of several marine species show more variability over time. The top panel shows shifts in spatial distribution over time for select fish species, based on their latitudinal centers of biomass. The four panels on the bottom show biomass estimates for the same marine resource stocks. Gulf of Maine cod, a coldwater species, has not shifted in location but has declined in biomass, while black sea bass (a warmwater species) has moved northward and increased in biomass as waters have warmed. The lobster distribution shift reflects declines in productivity of the southern stock and increasing biomass of the northern stock. Sources: (black sea bass) adapted from Northeast Fisheries Science Center 2017; (all others) Gulf of Maine Research Institute.
A number of coastal communities in the Northeast region have strong social and cultural ties to marine fisheries, and in some communities, fisheries represent an important economic activity as well. Future ocean warming and acidification, which are expected under all scenarios considered, would affect fish stocks and fishing opportunities available to coastal communities. Fisheries targeting species at the southern extent of their range have already experienced substantial declines in landings with rising ocean temperatures, and this pattern is projected to continue in the future (e.g., Cooley et al. 2015, Pershing et al. 2015, Le Bris et al. 2018). Fishers may need to travel farther to fishing locations for species they currently catch, increasing fuel and crew costs. Distribution shifts (Figure 18.6) can also create opportunities to target new species moving into an area. The impacts and opportunities associated with these changes will not be evenly shared within or among fisheries, fleets, or communities; as such, adaptation may alter social dynamics, cultural ties, and economic benefits.

Sea Level Rise, Storms, and Flooding

Along the Mid-Atlantic coast (from Cape Hatteras, North Carolina, to Cape Cod, Massachusetts), several decades of tide gauge data through 2009 have shown that sea level rise rates were three to four times higher than the global average rate. The region’s sea level rise rates are increased by land subsidence (sinking)—largely due to vertical land movement related to the melting of glaciers from the last ice age—which leaves much of the land in this region sinking with respect to current sea level. Additionally, shorter-term fluctuations in the variability of ocean dynamics, atmospheric shifts, and ice mass loss from Greenland and Antarctica have been connected to these recent accelerations in the sea level rise rate in the region. For example, a slowdown of the Gulf Stream during a shorter period of extreme sea level rise observed over 2009–2010 has been linked to a weakening of the Atlantic meridional overturning circulation—the northward flow of upper-level warm, salty waters in the Atlantic (including the Gulf Stream current) and the southward flow of colder, deeper waters. These higher-than-average rates of sea level rise measured in the Northeast have also led to a 100%–200% increase in high tide flooding in some places, causing more persistent and frequent (so-called nuisance flooding) impacts over the last few decades.

Coastal flood risks from storm-driven precipitation and surges are major drivers of coastal change and are also amplified by sea level increases. Storms have unique climatological features in the Northeast—Nor’easters (named for the low-pressure systems typically impacting New England and the Mid-Atlantic with strong northeasterly winds blowing from the ocean over coastal areas) typically occur between September and April, and when coupled with the Atlantic hurricane season between June and September, the region is susceptible to major storms nearly year-round. Storm flood heights driven by hurricanes in New York City increased by more than 3.9 feet (1.2 m) over the last thousand years. When coupled with storm surges, sea level rise can pose severe risks of flooding, with consequent physical and mental health impacts on coastal populations (see Key Messages 4 and 5).
Landscape Change and Impacts on Ecosystem Services

Because of the diversity of the Northeast’s coastal landscape, the impacts from storms and sea level rise will vary at different locations along the coast (Figure 18.7).12,13 Rocky and heavily developed coasts have limited infiltration capacity to absorb these impacts, and thus, these low-elevation areas will become gradually inundated.222,223 However, more dynamic environments, such as mainland and barrier beaches, bluffs, and coastal wetlands, have evolved over thousands of years in response to physical drivers. Such responses include erosion, overwashing, vertical accretion (increasing elevation due to sediment movement), flooding in response to storm events,218,224,225 and landward migration over the longer term as sea level has risen.226 Uplands, forests, and agricultural lands can provide transitional areas for these more dynamic settings, wherein the land gradually converts to a tidal marsh.

Varied ecosystem services and natural features have long attracted and sustained people along the coast of the Northeast region. Ecosystem services—including the provisioning of
groundwater resources, the filtering of non-point source pollution, sequestering carbon, mitigating storm impacts and erosion, and sustaining working frontwaters and cultural features such as iconic regional landscapes, recreation, and traditions—are facing multiple climate threats. Marshes and beaches serve as the first line of defense for coastal property and infrastructure in the face of storms.227 They also provide critical habitat for a variety of migratory shorebirds and, when combined with nearshore seagrass and estuaries, serve as nurseries for many commercial marine species.37,38,150,151,228,229 Regional marshes trap and store carbon147,230,231,232 and help to capture non-point source pollution before it enters seawater.233,234,235 Regional beaches are important tourist and recreational attractions, and many coastal national parks and national historic sites throughout the region help preserve cultural heritage and iconic coastal landscapes.236,237 The Northeast coast is also home to many Indigenous peoples whose traditions and ways of life are deeply tied to land and water (Box 18.2). Coastal tribes often have limited resources, infrastructure, and land ownership, and these limitations can worsen the impacts of climate change and prohibit relocation (Ch. 15: Tribes, KM 1 and 3).

Box 18.2: Indigenous Peoples and Tribal Nations

Indigenous peoples and tribal nations of the Northeast region have millennia-long relationships with the diverse landscapes and climate zones found throughout the region.238,239,240 Currently, for the 18 federally recognized, numerous state-recognized, and federally unrecognized tribal nations of the Northeast241,242 the challenges of adapting to a changing climate add additional uncertainty to existing efforts for reclamation of land and sovereignty and the revitalization of languages and cultures (Ch. 15: Tribes, KM 1 and 3).97,242 However, in response to a regional shift in the seasons, there has been an increase in climate adaptation work by tribes over the last decade (Ch.15: Tribes, Figure 15.1). These projects have been framed by Indigenous knowledges to address impacts to culturally and economically important resources and species, such as brown ash, sweetgrass, forests, and sugar maple, as well as inland and ocean fisheries.238,244,245,246 These projects provide important results for the tribal nations themselves but could also provide examples of adaptation and survival for other tribal nations and non-tribal communities to consider as they work towards a deeper and more complex engagement to address future landscapes.97,240 Although not all tribally led climate research and projects across regions have been reported or published, there are even fewer publicly available examples in the Northeast region, and especially for state-recognized and unrecognized tribes. This seems to present itself as a potential future research opportunity for tribal engagement and collaborations in the Northeast (Ch. 15: Tribes).97
Projections of Future Sea Level Rise and Coastal Flooding

Projections for the region suggest that sea level rise in the Northeast will be greater than the global average of approximately 0.12 inches (3 mm) per year.\(^{247,248}\) According to Sweet et al. (2017),\(^{47}\) the more probable sea level rise scenarios—the Intermediate-Low and Intermediate scenarios from a recent federal interagency sea level rise report (App. 3: Data & Scenarios)—project sea level rise of 2 feet and 4.5 feet (0.6 m and 1.4 m) on average in the region by 2100, respectively.\(^{47}\) The worst-case and lowest-probability scenarios, however, project that sea levels in the region would rise upwards of 11 feet (3 m) on average by the end of the century.\(^{47}\) The higher projections for the region as compared with most others in the United States are due to continued changes in oceanic and atmospheric dynamics, thermal expansion, ice melt contributions from Greenland and Antarctica, and ongoing subsidence in the region due to tectonics and non-tectonic effects such as groundwater withdrawal.\(^{47,50,249,250,251,252}\) Furthermore, the strongest hurricanes are anticipated to become both more frequent and more intense in the future, with greater amounts of precipitation (Ch. 2: Climate, Box 2.5).\(^{50,253,254,255}\) Thirty-two percent of open-coast north and Mid-Atlantic beaches are predicted to overwash during an intense future nor’easter type storm,\(^{256}\) a number that increases to more than 80% during a Category 4 hurricane.\(^{257,258}\)

Future Adaptability of the Coastal Landscape

The dynamic ability of coastal ecosystems to adapt to climate-driven changes depends heavily upon sufficient sediment supply, elevation and slope, barriers to migration, tidal restrictions, wave climatology, and the rates of sea level rise. Although nearly 70% of the Northeast coast has some physical ability to dynamically change,\(^{13}\) an estimated 88% of the Northeast population lives on developed coastal landforms that have limited ability to naturally adapt to sea level rise.\(^{260}\) Built infrastructure along the coast, such as seawalls, bulkheads, and revetments, as well as natural barriers, such as coastal bluffs, limits landward erosion; jetties and groins interrupt alongshore sediment supply; and culverts and dams create tidal restrictions that can limit habitat suitability for fish communities (see Figure 18.7).\(^{261}\) An estimated 26% of open ocean coast from Maine to Virginia contains engineering structures.\(^{262}\) While these structures can help mitigate hazards to people and property, they also reduce the land area for ecosystem migration, as well as the adaptive capacity of natural coastal environments.\(^{43,227,263,264}\) The ability of marshes in the region to respond to sea level-induced change varies by location, with some areas increasing in elevation, experiencing vegetation shifts, and/or expanding in extent while others are not.\(^{265,266,267,268,269,270,271}\) Forest diebacks, or “ghost forests,” due to wetland encroachment\(^{70,272}\) are being observed in southern New Jersey and Maryland (Figure 18.8), although one study found that southern New England forests are not showing similar signs of dieback.\(^{273}\)

Forest Dieback Due to Sea Level Rise

Figure 18.8: Atlantic white cedars dying near the banks of the Bass River in New Jersey show wetland encroachment on forested areas. Photo credit: Ted Blanco/Climate Central.
Projected changes in climate will threaten the integrity of coastal landforms and ecosystems that provide services people and animals rely on and that act as important natural buffers to hazards. Under more extreme scenarios (such as the higher scenario, RCP8.5), marshes are unlikely to survive and, thus, would convert to open water. At lower rates of sea level rise, marsh health will depend heavily upon site-specific hydrologic, physical, and sediment supply conditions. Long-term coastal erosion, as driven by sea level rise and storms, is projected to continue, with one study finding the shoreline likely to erode inland at rates of at least 3.3 feet (1 m) per year among 30% of sandy beaches along the U.S. Atlantic coast. Continued increases in the rate of sea level rise—on the order of 0.08 inches (2 mm) per year above the 20th-century rate—could cause much of the open ocean coasts in the Mid-Atlantic to transition to a state wherein coastal barrier systems migrate landward more rapidly, experience reductions in width or height, and overwash and breach more frequently. Such an increase is projected to occur this century under the Intermediate-Low scenario, which suggests that global sea levels will rise approximately 0.24 inches (6 mm) per year.

An ongoing challenge, now and in the future, is to adequately account for and determine the monetary value of the ecosystem services provided by marine and coastal environments and to adaptively manage the ecosystems to achieve targets that are responsive to both development and conservation.

These changes to the coastal landscape would threaten the sustainability of communities and their livelihoods. Historical settlement patterns and ongoing development combine to increase the regional vulnerability of coastal communities to sea level rise, coastal storms, and increased inundation during high tides and minor storms. For example, estimates of coastal property losses and protective investments through 2100 due to sea level rise and storm surge vary from less than $15 billion for southeastern Massachusetts to in excess of $30 billion for coastal New Jersey and Delaware under either the lower (RCP4.5) or higher (RCP8.5) scenarios (discounted at 3%). Saltwater intrusion can also impact drinking water supplies, including the alteration of groundwater systems. A growing area of research explores potential migration patterns in response to climate-related coastal impacts, where coastal states such as Massachusetts, New Jersey, and New York are anticipated to see large outflows of migrants, a pattern that would stress regional locations further inland. In addition to property and infrastructure impacts (Key Message 3), the facilities and cultural resources that support coastal tourism and recreation (such as parking lots, pavilions, and boardwalks), as well as cultural landscapes and historic structures, will be at increased risk from high tide flooding, storm surge, and long-term inundation. In some locations, these culturally and socially important structures also support economic activity; for example, many fishing communities rely on small docks and other shoreside infrastructure for their fishing operations, increasing the risk of substantial disruption if they are lost to sea level rise and increasing storm frequency.
Key Message 3

Maintaining Urban Areas and Communities and Their Interconnectedness

The Northeast's urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate.

Climate–Infrastructure Interaction and Heightened Risks

Northeastern cities, with their abundance of concrete and asphalt and relative lack of vegetation, tend to have higher temperatures than surrounding regions due to the urban heat island effect (increased temperatures, typically measured during overnight periods, in highly urbanized areas in comparison to outlying suburban, exurban, and rural locations). During extreme heat events, nighttime temperatures in the region's big cities are generally several degrees higher than surrounding regions, leading to higher risk of heat-related death. In urban areas, the hottest days in the Northeast are also often associated with high concentrations of urban air pollutants including ground-level ozone (Ch. 13: Air Quality, KM 1). This combination of heat stress and poor urban air quality can pose a major health risk to vulnerable groups: young children, elderly, socially or linguistically isolated, economically disadvantaged, and those with preexisting health conditions, including asthma. Vulnerability is further heightened as key infrastructure, including electricity for air conditioning, is more likely to fail precisely when it is most needed—when demand exceeds available supply—with the potential for substantial negative health consequences. Finally, vulnerability to heat waves is not evenly distributed throughout the region. Rather, outdoor versus indoor air temperatures, baseline health, occupation, and access to air conditioning are important determinants of vulnerability (see Key Message 4).

Urban areas are at risk for large numbers of evacuated and displaced populations and damaged infrastructure due to both extreme precipitation events and recurrent flooding, potentially requiring significant emergency response efforts and consideration of long-term commitment to rebuilding and adaptation, and/or support for relocation where needed. Poor, elderly, historically marginalized, recent immigrants, and linguistically or socially isolated individuals as well as those populations with existing health disparities are more vulnerable to precipitation events and flooding due to a limited ability to prepare for and cope with such events.

Critical Infrastructure Service Disruption

Much of the infrastructure in the Northeast, including drainage and sewer systems, flood and storm protection assets, transportation systems, and power supply, is nearing the end of its planned life expectancy. Current water-related infrastructure in the United States is not designed for the projected wider variability of future climate conditions compared to those recorded in the last century (Ch. 3: Water, KM 2). In order to make Northeast systems resilient to the kind of extreme climate-related disruptions the region has experienced recently—and the sort of disruptions projected for the future—would require significant new investments in infrastructure. For example, in Pennsylvania, bridges are expected to be more prone to damage during extreme weather events, because the state leads the country in the highest percentage of structurally deficient bridges. Pennsylvania's water treatment and wastewater systems are also notably aging, requiring an estimated $28 billion in new investments (Ch. 3: Water, KM 2).
investment over the next 20 years for repairs and to meet increasing demands.288

Climate-related disruptions will only exacerbate existing issues with aging infrastructure. Sea level rise has amplified storm impacts in the Northeast region (Key Message 2), contributing to higher surges that extend further inland, as demonstrated in New York City.14,15,16 Sea level rise is leading to an increase in the frequency of coastal flooding, a trend that is projected to grow for cities such as Baltimore and Washington, DC.289 High tide flooding has increased by a factor of 10 or more over the last 50 years for many cities in the Northeast region and will become increasingly synonymous with regular inundation, exceeding 30 days per year for an estimated 20 cities by 2050 even under a very low scenario (RCP2.6).236 More frequent high tide flooding (also referred to as nuisance, or sunny day, flooding) will be experienced at low-elevation cities and towns in the region (Figure 18.9). Sea level rise (see Key Message 2) under higher scenarios will likely increase property losses from hurricanes and other coastal storms for the region by $6–$9 billion per year by 2100, while changes in hurricane activity could raise these estimates to $11–$17 billion per year.260 In other words, projected future costs are estimated to continue along a steep upward trend relative to what is being experienced today. However, there is limited published research that quantifies the costs associated with increased damage across an entire system in response to amplified storm events. Actions to replace and/or significantly modify the Northeast’s aging infrastructure provide opportunities to incorporate climate change adaptation and resilience into standard capital upgrades, reducing these future costs.

Mitigation in the Northeast

The Northeast region has traditionally been a leader in greenhouse gas mitigation action, serving as a potential model for other states. The Regional Greenhouse Gas Initiative is the first mandatory market-based program in the United States to cap and reduce CO\textsubscript{2} emissions from the power sector through a cooperative effort among Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont. The photo shows king tide flooding on Dock Street in Annapolis, Maryland, on December 21, 2012. Photo credit: Amy McGovern (CC BY 2.0).

King Tide Flooding in Northeast

Service and resource supply infrastructure in the Northeast region is at increasing risk of disruption, resulting in lower quality of life, economic declines, and increased social inequality.17 Loss of public services affects the capacity of communities to function as administrative and economic centers and triggers disruptions of interconnected supply chains (Ch. 16: International, KM 1). Interdependencies across critical infrastructure sectors such as water, energy, transportation, and telecommunication can lead to cascading failures during extreme weather and climate-related disruptions,17,59 as occurred during the 2003 blackout in New York City (Ch. 17: Complex Systems, Box 17.5; Ch. 11: Urban). For example, the Northeast is projected to experience a significant increase in summer heat and the number and/or duration of heat waves that will further stress summertime energy peak...
load demands from higher air conditioning use and the greater need to pump and treat water. Energy supply failures can also affect transportation operations, and even after electricity is restored, a significant time lag can occur until transportation services such as subway signals and traffic lights return to operation. Understanding and coping with these interdependencies require cross-sector analysis and engagement by the private sector and within and across different levels of government. As a result, the connection between climate impacts, adaptation, and sustained economic development of cities is a major concern in the region.

The large number of manufacturing, distribution, and storage facilities, as well as historic structures, in the region are also vulnerable to climate shifts and extremes. For example, power plants in New York City tend to be located along the coastline for easy access to water for cooling and maritime-delivered fuel and are often located within about 16 feet (5 m) of sea level. This is not unusual, as there are many power plants and petroleum storage facilities located along the Northeast coastline.

The historic preservation community has begun to address the issue of climate change. Many historic districts in cities and towns, such as Annapolis, Maryland, and Newport, Rhode Island, are at low elevations along the coast and now face the threat of rising sea levels.

Preparedness in Cities and Towns

Projected increases in coastal flooding, heavy precipitation, runoff, and extreme heat would have negative impacts on urban centers with disproportionate effects on at-risk communities. Larger cities, including Boston, MA, Burlington, VT, Hartford, CT, Newark, NJ, Manchester, NH, New York, Philadelphia, PA, Pittsburgh, PA, Portland, ME, Providence, RI, and Washington, DC, have begun to plan for climate change and in some instances have started to implement action, particularly when upgrading aging infrastructure (e.g., NYC Special Initiative for Rebuilding and Resiliency 2013, Climate Ready Boston 2016, City of Philadelphia 2016, City of Pittsburgh 2017). Examples from municipalities of varying sizes are common (e.g., U.S. EPA 2017). These cities seek to maintain the within-city and intercity connectivity that fosters growth, diversity, liveliness of urban neighborhoods, and protection of vulnerable populations, including the elderly, young, and disadvantaged. Further, city leaders hope to avoid forced migration of highly vulnerable populations and the loss of historical and cultural resources. City managers and stakeholders recognize that extreme heat events, sea level rise, and storm surge have the potential to lead to complex disasters and sustained critical infrastructure damage. Specific actions cities are taking focus largely on promoting the resilience of critical infrastructure, enhancing the social resilience of communities (especially of vulnerable populations), promoting ecosystem service hazard mitigation, and developing new indicators and monitoring systems to achieve a better understanding of climate risks and to identify adaptation strategies (see Key Message 5) (see also Ch. 11: Urban). In the Northeast region, Superstorm Sandy illustrated urban coastal flooding risk, and many localities, not just those directly impacted by the storm, have developed increased coastal resilience plans and efforts. New York City has been able to put in place a broad set of efforts in a variety of critical infrastructure sectors, including making the subway more protected from flooding (Figure 18.10).
Many Northeast cities are served by combined sewer systems that collect and treat both storm water and municipal wastewater. During heavy rain events, combined systems can be overwhelmed and release untreated sewage into local bodies of water. Moderate flooding events are expected to become more frequent in most of the Northeast during the 21st century because of more intense precipitation related to climate change. Finally, increased precipitation and high streamflows also increase streambed erosion, especially when coupled with wetter soils prior to storm events. Erosion at bridges can cause bridge failures, leading to transportation disruption, injuries, and potential fatalities.

The impacts of changes in precipitation and temperature on water supply system behavior in the Northeast are complex. Future potable water supplies are expected to be adequate to meet future demand on average across the Northeast, but the number of watersheds where demand exceeds supply is projected to increase under most climate change scenarios. Studies of specific water systems in the Northeast show mixed results. The New York City reservoir system shows high resilience and reliability under different climate change scenarios. Projected flows in the Potomac River, the primary water supply for the Washington, DC, metropolitan area, are lower in most climate change scenarios, with minor to major impacts on water supply.

Key Message 4

Threats to Human Health

Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise. These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life. Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities.

Health Effects of Extreme Heat

Present-day high temperatures (heat) have been conclusively linked to a higher risk of illness and death, particularly among older adults, pregnant women, and children (Ch 14: Human Health). A number of studies have replicated these findings specifically in the Northeast (see Box 18.3; e.g., Wellenius et al. 2017, Bobb et al. 2014, Hondula et al. 2012). Ambient temperatures and heat-related health effects can vary significantly over small geographic areas due to local land cover (for example, due to the urban heat island effect; see Key Message 3) (see also Ch. 5: Land Changes, KM 1), topography, and the resilience of individuals and communities.
example, older or sicker individuals and those persons who are without access to air conditioning, living in older homes, socially isolated, or working outdoors are considered particularly vulnerable to the effects of heat.309,310,311

Annual average temperature over the contiguous United States has increased by \textit{1.2°F (0.7°C)} over the last few decades and by \textit{1.8°F (1.0°C)} relative to the beginning of the last century. Recent decades are the warmest in at least the past 1,500 years.312 Average annual temperatures across the Northeast have increased from less than \textit{1°F (0.6°C)} in West Virginia to about \textit{3°F (1.7°C)} or more in New England since 1901.18,19 Although the relative risk of death on very hot days is lower today than it was a few decades ago, heat-related illness and death remain significant public health problems in the Northeast.20,21,22,23 For example, a study in New York City estimated that in 2013 there were 133 excess deaths due to extreme heat.24

Annual average temperature in the contiguous United States is expected to increase by an additional \textit{2.5°F (1.4°C)} over the next few decades regardless of future greenhouse gas emissions (Ch 2: Climate).50 By 2050, average annual temperatures in the Northeast are expected to increase by \textit{4.0°F (2.2°C)} under the lower scenario (RCP4.5) and \textit{5.1°F (2.8°C)} under the higher scenario (RCP8.5) relative to the near present (1975–2005).50 with several more days of extreme heat occurring throughout the region each year.

These projected increases in temperature are expected to lead to substantially more premature deaths, hospital admissions, and emergency department visits due to heat across the Northeast.23,25,26,27,28,29 For example, in the Northeast we can expect approximately 650 more excess deaths per year caused by extreme heat by 2050 under either a lower or higher scenario (RCP4.5 or RCP8.5) and 960 (under RCP4.5) to 2,300 (under RCP8.5) more excess deaths per year by 2090.29

The risks associated with present-day and projected future heat can be minimized by reducing greenhouse gas emissions, minimizing exposure through urban design, or increasing individual and community resilience.23,29,313 For example, in the Northeast region, Philadelphia and New York City have been leaders in implementing policies and investing in infrastructure aimed at reducing the number of excess deaths from extreme heat.314 Compared to the higher scenario (RCP8.5), 1,400 premature deaths from extreme temperatures could be avoided in the Northeast each year by 2090 if global greenhouse gas emissions are consistent with the lower scenario (RCP4.5), resulting in $21 billion in annual savings (in 2015 dollars).29

Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island

Moderate and extreme heat events already pose a health risk today,305,306,315,316 and climate change could increase this risk. Of note, days of moderate heat occur much more often compared to days of extreme heat, such that days of moderate heat may, in aggregate, be associated with a larger number of adverse health events.315 Average summertime temperatures are projected to continue to rise through the end of the century, raising concern about the public health impact of climate change across Northeast communities. A nationwide study projected that some of the largest increases in heat-related mortality would occur in the Northeast region, with an additional 50–100 heat-related deaths per year per million people by 2050 and 120–180 additional deaths per million people by 2100 under the mid-high scenario (RCP6.0).28 Heat health risks seem to be highest at the start of the warm weather each year317 and among vulnerable populations such as outdoor workers, young children, and the elderly.
Box 18.3: Rising Temperatures and Heat-Related Emergency Room Visits in Rhode Island, continued

In the small, coastal northeastern state of Rhode Island (population of about 1 million), maximum daily temperatures in the summer have trended upwards over the last 60 years such that Rhode Islanders experienced about three more weeks of uncomfortably hot weather over 2015–2016 than in the 1950s (Figure 18.11, left panel). A recent study looking at visits to hospital emergency rooms (ERs) found that the risk of heat-related ER visits increased sharply as maximum daily temperatures climbed above 80°F (Figure 18.11, middle panel). The researchers projected that with continued climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5; Figure 18.11, right panel). Importantly, about 1,000 fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), representing the potential protective benefit of limiting greenhouse gas emissions. Such reductions would also lead to improvements in air pollution and health starting today.

In response to the health threat from heat, local National Weather Service offices issue heat advisories and excessive heat warnings when the forecast calls for very hot weather. Based on the results of a study across multiple states, the National Weather Service Northeast Region updated its heat advisory guidelines to be issued when the heat index is forecast to exceed 95°F for any amount of time on two or more days or 100°F for any amount of time on a single day. Many communities in the Northeast have implemented plans to respond to these heat alerts to better protect the public’s health (for example, with the Centers for Disease Control and Prevention’s Building Resilience Against Climate Effects program), although gaps in knowledge remain. Uncertainties exist in the estimation of the cumulative impact on health of multiple aspects of weather, including heat, drought, and heavy precipitation, all of which have potential adverse impacts on human health.

Figure 18.11: This figure shows the observed and projected impacts of excess heat on emergency room visits in Rhode Island. (left) In Rhode Island, maximum daily temperatures in the summer have trended upwards over the last 60 years, such that residents experienced about three more weeks of health-threatening hot weather over 2015–2016 than in the 1950s. (middle) A recent study looking at visits to hospital emergency rooms (ERs) found that the incidence rate of heat-related ER visits rose sharply as maximum daily temperatures climbed above 80°F. (right) The study estimates that with continued climate change, Rhode Islanders could experience an additional 400 (6.8% more) heat-related ER visits each year by 2050 and up to an additional 1,500 (24.4% more) such visits each year by 2095 under the higher scenario (RCP8.5). About 1,000 fewer annual heat-related ER visits are projected for the end of the century under the lower scenario (RCP4.5) compared to the higher scenario (RCP8.5), reflecting the estimated health benefits of adhering to a lower greenhouse gas emissions scenario. Sources: (left) Brown University; (middle, right) adapted from Kingsley et al. 2016. Reproduced from Environmental Health Perspectives.
Health Effects of Air Pollution, Aeroallergens, and Wildfires

Climate change is increasing the risk of illness and death due to higher concentrations of air pollutants in many parts of the United States (Ch. 13: Air Quality). In the Northeast, climate change threatens to reverse improvements in air quality that have been achieved over the past couple of decades. For example, climate change is projected to influence future levels of ground-level ozone pollution in the Northeast by altering weather conditions and impacting emissions from human and natural sources.\(^{324,325,326}\) This “climate penalty,” whereby reductions in ozone precursor emissions are at least partially offset by a changing climate, is projected to lead to substantially more ozone pollution-related deaths;\(^{324,325,327}\) 200–300 more excess deaths per year by 2050 compared to 2000 by one estimate.\(^{325}\)

Excess deaths due to ground-level ozone pollution are projected to increase substantially under both lower (RCP4.5) and higher (RCP8.5) scenarios.\(^{327}\) Reducing global emissions of greenhouse gases from a higher scenario to a lower scenario could prevent approximately 360 deaths per year due to air quality in 2090, saving approximately $5.3 billion per year (in 2015 dollars, undiscounted).\(^{327}\) Moreover, many sources of the greenhouse gas emissions that contribute to climate change also contribute to degraded air quality today, with adverse effects on people’s health. The adverse health risks from air pollution can be reduced in the present and in the future by addressing these common emission sources.\(^{329}\)

More frequent and severe wildfires due to climate change pose an increasing risk to human health through impacts on air quality (Ch. 13: Air Quality, KM 2). Wildfire smoke can travel hundreds of miles, as occurred in 2015 when Canadian wildfire smoke caused air quality exceedance days in Baltimore, Maryland.\(^{328}\) Climate change is also expected to lengthen and intensify pollen seasons in parts of the United States, potentially leading to additional cases of allergic rhinitis (also known as hay fever) and allergic asthma episodes (Ch. 13: Air Quality, KM 3).\(^{29,329}\) Among individuals with allergic asthma, exposure to certain types of pollen can result in worsening of symptoms leading to increases in allergy medication sales and emergency room visits for asthma, as already documented in New York City.\(^{330}\)

Indoors, climate change is expected to bring conditions that foster mold growth, such as more dampness, and more frequent power outages that impair ventilation. Damp indoor conditions and mold are both known to be associated with respiratory illnesses including asthma symptoms and wheezing.\(^{331}\) When damp conditions occur in buildings, rapid action could be warranted—remediation in a northeastern office building after the development of respiratory or severe non-respiratory symptoms by building inhabitants was not effective in reducing symptoms.\(^{332}\)

Changing Ecosystems and Risk of Vector-Borne Disease

The risk posed by vector-borne diseases (those transmitted by disease-carriers such as fleas, ticks, and mosquitoes) such as Lyme disease and West Nile virus under a changing climate is also of concern in the Northeast region. These diseases, specifically tick-related Lyme disease, have been linked to climate, particularly with abundant late-spring and early-summer moisture. By 2065–2080, under the higher scenario (RCP8.5) it is projected that the period of elevated risk of Lyme disease transmission in the Northeast will begin 0.9–2.8 weeks earlier between Maine and Pennsylvania, compared to the climate observed over 1992–2007.\(^{67}\) Similarly, a recent analysis estimates that there would be an additional 490 cases of West Nile neuroinvasive disease per year in the Northeast by 2090 under the higher
scenario (RCP8.5) versus 210 additional cases per year under the lower scenario (RCP4.5). The geographic range of suitable habitats for other mosquito vectors such as the northern house mosquito (Culex pipiens and Culex restuans, which transmit West Nile virus) and the Asian tiger mosquito (Aedes albopictus, which can also transmit West Nile virus and other mosquito-borne diseases) is expected to continue shifting northward into New England in the next several decades and through the end of the century as a result of climate change.

Gastrointestinal Illness from Waterborne and Foodborne Contaminants

Another consequence of climate change is the spread of marine toxins and pathogens (Key Message 2). Some of these pathogens pose health risks through consumption of contaminated seafood. Harmful algal blooms, which can cause paralytic shellfish poisoning in humans, have become more frequent and longer lasting in the Gulf of Maine. Similarly, pathogenic strains of the waterborne bacteria Vibrio—which are already causing thousands of foodborne illnesses per year—have expanded northward and have been responsible for increasing cases of illness in oyster consumers in the Northeast region.

Combined sewer systems (where municipal wastewater and storm water use the same pipes) are particularly common in the Northeast given the older infrastructure typical of the region. When runoff from heavy precipitation exceeds the capacity of these systems, combined sewer overflow containing untreated sewage is released into local waterways, potentially impacting the quality of water used for recreation or drinking. For example, a study in Massachusetts found an increased risk of gastrointestinal illness with heavy precipitation causing combined sewer overflows. Increased risk of campylobacteriosis and salmonella has been documented in Maryland with increased heavy precipitation and streamflows. Moderate flooding events are expected to become more frequent in most of the Northeast during the 21st century because of more intense precipitation related to climate change. This could, therefore, increase the frequency of combined sewer overflows and waterborne disease. Some cities and towns are making substantial investments to reduce or eliminate the risks of combined sewer overflows (Figure 18.12).

Storm-related power outages can also pose a risk of foodborne illness. Increased diarrheal illnesses from consumption of spoiled food have also been documented in New York City in 2003 following a power outage that affected millions in the Northeast (Ch. 17: Complex Systems, Box 17.5).

District of Columbia Water and Sewer Authority’s Clean Rivers Project

Figure 18.12: The District of Columbia Water and Sewer Authority’s Clean Rivers Project aims to reduce combined sewer overflows into area waterways. The Clean Rivers Project is expected to reduce overflows annually by 96% throughout the system and by 98% for the Anacostia River. In addition, the project is expected to reduce the chance of flooding in the areas it serves from approximately 50% to 7% in any given year and reduce nitrogen discharged to the Chesapeake Bay by approximately 1 million pounds per year. Photo credit: Daniel Lobo (CC BY 2.0).
Mental Health and Well-Being

In addition to the adverse impacts on people’s physical health, climate change is also associated with adverse impacts on mental health (Ch. 14: Human Health, KM 1). Specifically in the Northeast region, sea level rise, storm surge, and extreme precipitation events associated with climate change will contribute to higher risk of flooding in both coastal and inland areas—particularly in urban areas with large amounts of impervious surface that increases water runoff. In addition to the risks of physical injury, waterborne disease, and healthcare service disruption caused by flooding, lasting mental health consequences, such as anxiety, depression, and post-traumatic stress disorder can impact affected communities, as was observed in the wake of Superstorm Sandy in 2012 (Box 18.4).

Extreme weather events can have both immediate, short-term effects, as well as longer-term impacts on mental health and well-being that can last years after the specific event.

Extreme heat can also affect mental health and well-being. Higher outdoor temperatures are associated with decreases in subtle aspects of well-being such as decreased joy and happiness and increased aggression and violence. Underlying mental health conditions and geography also affect vulnerability. For example, a study of hospitalization for heat-related illness among people with mental health disorders showed increased risk in rural versus urban areas, possibly due to lower availability of mental health services in these rural areas.

Separately, large population changes from climate-driven human migration could substantially influence both coastal and inland communities in the Northeast region (see also Key Messages 2 and 5). The impacts of human migration on health and well-being depend on myriad factors, including the context of the migration.

Box 18.4: Role of Public Health and Healthcare Sector in Resilience and Prevention

There are numerous examples of how the public health and healthcare sectors are preparing for climate change and making energy saving changes, as highlighted in the U.S. Department of Health and Human Services’ report on enhancing healthcare resilience.

One such example occurred in Greenwich, Connecticut, where Greenwich Hospital installed a combined heat and power system that conserves energy and provided stability in the wake of Superstorm Sandy.

In June 2016, severe flooding in West Virginia resulted from a “thousand-year storm” and highlighted the important role of the healthcare sector in building resilience to extreme precipitation events. A recent study of the event described the role of state and federal government working in partnership with healthcare volunteer organizations to effectively mobilize a response in the setting of such a disaster. It emphasized the critical importance of healthcare professionals in providing emotional and mental health support to the response volunteers and the affected communities, as well as a need to increase capacity in these areas. See Key Message 5 in this chapter and Chapter 14: Human Health, Key Message 3 for more information on additional adaptation efforts that protect health.

Figure 18.13: A Red Cross volunteer talks with a community resident after the 2016 West Virginia floods. Additionally, local medical professionals mobilized to staff temporary clinical sites. Photo credit: National Guard Bureau Public Affairs.
Regional Variation in Health Impacts and Vulnerability

Although climate change affects all residents of the Northeast region, risks are not experienced equally. The impact of climate change on an individual depends on the degree of exposure, the individual sensitivity to that exposure, and the individual or community-level capacity to recover (Ch. 14: Human Health, KM 2).354 Thus, health impacts of climate change will vary across people and communities of the Northeast region depending on social, socio-economic, demographic, and societal factors; community adaptation efforts; and underlying individual vulnerability (see Key Message 5) (see also Ch. 28: Adaptation). Particularly vulnerable groups include older or socially isolated adults, children, low-income communities, and communities of color.

Key Message 5

Adaptation to Climate Change Is Underway

Communities in the Northeast are proactively planning and implementing actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges. Experience since the last assessment provides a foundation to advance future adaptation efforts.

Communities, towns, cities, counties, states, and tribes across the Northeast are engaged in efforts to build resilience to environmental challenges and adapt to a changing climate. Developing and implementing climate adaptation strategies in daily practice often occur in collaboration with state and federal agencies (e.g., New Jersey Climate Adaptation Alliance, New York Climate Clearinghouse, Massachusetts StormSmart Coasts and Climate Action Tool, Rhode Island StormTools, EPA, CDC).30,31,32,33,34,355,356 Advances in rural towns, cities, and suburban areas include low-cost adjustments of existing building codes and standards. In coastal areas, partnerships among local communities and federal and state agencies leverage federal adaptation tools and decision support frameworks (the National Oceanic and Atmospheric Administration’s [NOAA] Digital Coast, the U.S. Geological Survey’s [USGS] Coastal Change Hazards Portal, New Jersey’s Getting to Resilience).

Increasingly, cities and towns across the Northeast region are developing or implementing plans for adaptation and resilience in the face of a changing climate (e.g., EPA 201733). These approaches are designed to maintain and enhance the everyday life of residents and promote economic development. In some cities, adaptation planning has been used to respond to present and future challenges in the built environment. Regional efforts have recommended changes in design standards when building, replacing, or retrofitting infrastructure to account for a changing climate (Box 18.5). For example, the Port Authority of New York and New Jersey provided guidelines for engineers to account for projected changes in temperature, precipitation, and sea level rise when designing infrastructure assets.35 The cities of Philadelphia, Pennsylvania,296 Utica, New York,358 and Boston, Massachusetts,295 promote the use of green infrastructure to build resilience, particularly in response to flooding risk (Ch. 8: Coastal, Figure 8.2). In Jamaica Bay, New York, post-Superstorm Sandy efforts have fostered a set of local, regional, state, and federal actions that link resilience efforts to current climate risk, along with the potential for accelerated sea level rise and its implications for increased flood frequency (Ch. 28: Adaptation, KM 1).359
The issue of water security has emerged from vulnerability assessments and cuts across urban and rural communities. One example is the Washington, DC, metropolitan area’s potential use of the Potomac and Occoquan estuaries as water supplies and of retired quarries as water storage facilities. Adaptive reservoir operations have been implemented in the Northeast and other regions of the United States to better manage plausible future climate conditions and to meet other management goals (Ch. 3: Water, KM 3). Tribal nations have also focused on adaptation and the vulnerability of their water supplies, based on long-standing local values and traditional knowledge, including the use of water for drinking, habitat for fish and wildlife, agriculture, and cultural purposes.

While resilience efforts have focused on microscale adaptations to current climate risks, communities are increasingly seeing a need for larger-scale adaptation efforts. Wide disparities in adaptive capacity exist among communities in the region. Larger, often better-resourced communities have created climate offices and programs, while response has lagged in smaller or poorer communities that are often more dependent on county- or state-level programs and expertise. The move from small-scale to larger-scale and more transformative adaptation efforts involves complex policy transition planning, social and economic development, and equity considerations (Ch. 28: Adaptation, KM 4). This includes attention to community concerns about green gentrification—the practice of making environmental improvements in urban areas—that generally increases property values but often also drives out lower-income residents.

Box 18.5: Adapting the Northeast’s Cultural Heritage

A defining characteristic of the Northeast region is its rich, dense record of cultural heritage, marked by historic structures, archaeological sites, and cultural landscapes. The ability to preserve this cultural heritage is challenged by climate change. National parks and historic sites in the Northeast are already witnessing cultural resource impacts from climate change, and more impacts are expected in the future. These cultural resources present unique adaptation challenges, and the region is moving forward with planning for future adaptation.

Superstorm Sandy caused substantial damage to coastal New York Harbor parks, including Gateway National Recreation Area and Statue of Liberty National Monument, where buildings and the landscape surrounding the statue and on Ellis Island were impacted and the museum collections were threatened by the loss of climate control systems that were flooded. Sea level rise amplifies the impacts of storm events such as Superstorm Sandy, and the parks are using recovery as an opportunity to rebuild with more resilience to future storms. Heating and electrical systems in historic buildings have been elevated from basement levels. Design changes, such as using non-mold-growing materials and other engineering solutions, have been made while maintaining the buildings’ historic character. Following the storm, Gateway National Recreation Area added climate change vulnerability to their planning process for prioritizing historic structures between preserve, stabilize, or ruin. The recreation area has been implementing these priorities as part of the recovery process, providing examples of climate adaptation implementation. The human community on Rockaways peninsula also responded to Sandy by using urban forestry and agricultural practices to recover and to buffer against the impact of future storms (see Building Resiliency at the Rockaways tour).
Decision Support Tools and Adaptation Actions

While adaptation is progressing in a variety of forms in the Northeast region, many efforts have focused on assessing risks and developing decision support tools. Many of these assessments and tools have proven useful for specific purposes. Structured decision-making is where decision-makers engage at the outset to define a problem, objectives, alternative management actions, and the consequences and tradeoffs of such actions—before making any decisions. It is being increasingly applied to design management plans, determine research needs, and allocate resources to preserve habitat and resources throughout the region. While there has been little attention devoted to evaluating and communicating the suitability and robustness of the many tools that are now available. Efforts to evaluate decision support tools and processes in a rigorous scientific manner would help stakeholders choose the best tools to answer particular questions under specific circumstances.

One significant advancement that communities and infrastructure managers have made in recent years has been the development of risk, impact, and adaptation indicators, as well as monitoring systems to measure and understand climate change and its impacts. In recognizing the economic impacts of infrastructure service loss and disruption, government agencies have begun adaptation analyses to identify those infrastructure elements most critical for regional economic resilience during climate-related disruptions, as well as to identify communities most exposed to acute and chronic climate risks.

Resource managers, community leaders, and other stakeholders are altering the management of coastal areas and resources in the context of climate change (Boxes 18.6 and 18.7).

Box 18.6: Building Resilience in the Chesapeake Bay Watershed

The Chesapeake Bay watershed is experiencing stronger and more frequent storms, an increase in heavy precipitation events, increasing bay water temperatures, and a rise in sea level. These trends vary throughout the watershed and over time but are expected to continue over the next century under all scenarios considered. The trends are altering both the ecosystems and mainland and island communities of the Chesapeake Bay watershed. Achieving watershed goals would require changes in policies, programs, and/or projects to achieve restoration, sustainability, conservation, and protection goals for the entire system.

To gain a better understanding of the likely impacts of climate change, as well as potential management solutions for the watershed, the 2014 Chesapeake Bay Watershed Agreement committed the NOAA Chesapeake Bay Program (CBP) Partnership to take action to “increase the resiliency of the Chesapeake Bay watershed, including its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from changing environmental and climate conditions.” This new Bay Agreement goal builds on the 2010 Total Maximum Daily Load (TMDL) documentation and 2009 Presidential Executive Order 13508 that called for an assessment of the impacts of a changing climate on the Chesapeake Bay’s water quality and living resources. To achieve this goal and regulatory mandates, the CBP Partnership is undertaking efforts to monitor and assess trends and likely impacts of changing climatic and sea level conditions on the Chesapeake Bay ecosystem and to pursue, design, and construct restoration and protection projects to enhance resilience. The CBP Climate

U.S. Global Change Research Program 705 Fourth National Climate Assessment
Box 18.6: Building Resilience in the Chesapeake Bay Watershed, continued

Resiliency Workgroup’s Management Strategy recognizes that it is important to build community and institutional capacity and to develop analytical capability to build cross-science disciplinary knowledge and better understanding of societal responses. A significant activity now underway is geared towards the midpoint assessment of progress towards the 2025 Chesapeake Bay TMDL goal for water quality standard attainment. As part of the TMDL midpoint assessment, the CBP Partnership has developed tools and procedures to quantify the effects of climate change on watershed flows and pollutant loads, storm intensity, increased estuarine temperatures, sea level rise, and ecosystem influences, including loss of tidal wetland attenuation with sea level rise. Current modeling efforts are underway to assess potential climate change impacts under a range of projected climate change outcomes for 2025 and 2050.378

Addressing climate change within the context of established watershed planning and regulatory efforts is extremely complex and requires sound climate science, climate assessments, modeling, policy development, and stakeholder engagement (Ch. 28: Adaptation, Figure 28.1). The CBP Partnership is tackling this challenge on all of these fronts, with priority directed to understanding what is needed to achieve the 2025 nutrient reduction goals and the best management practices required to achieve climate-resilient rehabilitation goals.

For example, research in Delaware is exploring the use of seashore mallow as a transitional salt-tolerant crop because of gradual wetland migration onto agricultural lands as sea levels rise.379 Commercial and recreational fisheries and tourism depend upon living marine resources. Climate adaptation in ocean fisheries will entail coping and long-term planning responses at multiple levels of communities, industry, and management systems.380 Fishers have traditionally switched species as needed based on ecosystem or market conditions; this will continue to be an important adaptation option, but it is increasingly constrained by regulatory approaches in fisheries.155,178,179,202 Longer-term planning for climate adaptation has included state commissions to evaluate ocean acidification threats,381,382 federal efforts to articulate science strategies,383,384,385 species vulnerability assessments,143,386 coupled social-ecological vulnerability assessments for fishing communities,45 and planning for the potential inland migration of coastal populations due to sea level rise.386

The winter recreation industry has long considered snowmaking an adaptation to climate change.387 Snowmaking improvements should assist with the viability of some Northeast ski areas,117 while new tourism opportunities emerge.388

In order to sustain and advance these and other planned efforts towards climate change adaptation and resilience, decision-makers in the Northeast need to be aware of existing constraints and emerging issues. Constraints from the management, economic, and social context are highly uncertain.389 These efforts have faced a variety of barriers and limitations, including lack of funding and jurisdictional and legal constraints.390,391 In many cases, adaptation has been limited to coping responses that address short-term needs and are feasible within the current institutional context, whereas longer-term, more transformative efforts will likely require complex policy transition planning and frameworks that can address social and economic equality.363 The need for solutions that support industry and community flexibility in responding to climate-related changes has also been recognized.45,178

Earth’s changing climate is one of several stressors on human and natural systems, and it can work to exacerbate existing vulnerabilities and inequalities. Implementing resilience planning and climate change adaptation in
Box 18.7: Science for Balancing Wildlife and Human Needs in the Face of Sea Level Rise

Policymakers, agencies, and natural resource managers are under increasing pressure to manage coastal areas to meet social, economic, and natural resource demands, particularly as sea levels rise. Scientific knowledge of coastal processes and habitat use can support decision-makers as they balance these often-conflicting human and ecological needs. In collaboration with a wide network of natural resource professionals from state and federal agencies (including the U.S. Fish and Wildlife Service and National Park Service) and private conservation organizations, a research team from the U.S. Geological Survey (USGS) is conducting research and developing tools to identify suitable coastal habitats for species of concern, such as the piping plover (*Charadrius melodus*)—an ecologically important species with low population numbers—under a variety of sea level rise scenarios.

The multidisciplinary USGS team uses historical and current habitat availability and coastal characteristics to develop models that forecast likely future habitat from Maine to North Carolina. The collaborative partners, both researchers and managers, are critical to the program: they aid in data collection efforts through the “iPlover” smartphone application and help scientists focus research on specific management questions. Because these shorebirds favor sandy beaches that overwash frequently during storms, the resulting habitat maps also define current and future areas of high hazard exposure for humans and infrastructure.

Land-use planners can use results to determine optimal locations for constructing recreational facilities that minimize impacts on sensitive habitats and have a low probability of being overwashed. Alternatively, results can help resource managers proactively protect the highest-quality habitats to meet near- and long-term conservation goals and, in so doing, increase beach access for users by reducing human–bird conflicts and improving the certainty of beach availability for recreational use.

Figure 18.14: (a, b) These photographs show suitable piping plover habitat for (c) rearing chicks along the U.S. Atlantic coast. Photo credits: (a, b) Sara Zeigler, U.S. Geological Survey; (c) Josh Seibel, U.S. Fish and Wildlife Service.
order to preserve the cultural, economic, and natural heritage of the Northeast would require ongoing collaboration among tribal, rural, and urban communities as well as municipal, state, tribal, and federal agencies. The number and scope of existing adaptation plans in the Northeast show that many people in the region consider this heritage to be important.

Acknowledgments

Technical Contributors

Zoe P. Johnson,
U.S. Department of Defense, Naval Facilities Engineering Command (formerly NOAA Chesapeake Bay Office)

Amanda Babson
U.S. National Park Service

Elizabeth Pendleton
U.S. Geological Survey

Benjamin T. Gutierrez
U.S. Geological Survey

Joseph Salisbury
University of New Hampshire

Andrew Sven McCall Jr.
University of Vermont

E. Robert Thieler
U.S. Geological Survey

Sara L. Zeigler
U.S. Geological Survey

USGCRP Coordinators

Christopher W. Avery
Senior Manager

Matthew Dzaugis
Program Coordinator

Allyza Lustig
Program Coordinator

Opening Image Credit

Bartram Bridge: © Thomas James Caldwell/Flickr (CC BY-SA 2.0). Adaptation: cropped top and bottom to conform to the size needed for publication.
Traceable Accounts

Process Description

It is understood that authors for a regional assessment must have scientific and regional credibility in the topical areas. Each author must also be willing and interested in serving in this capacity. Author selection for the Northeast chapter proceeded as follows:

First, the U.S. Global Change Research Program (USGCRP) released a Call for Public Nominations. Interested scientists were either nominated or self-nominated and their names placed into a database. The concurrent USGCRP Call for Public Nominations also solicited scientists to serve as chapter leads. Both lists were reviewed by the USGCRP with input from the coordinating lead author (CLA) and from the National Climate Assessment (NCA) Steering Committee. All regional chapter lead (CL) authors were selected by the USGCRP at the same time. The CLA and CL then convened to review the author nominations list as a “first cut” in identifying potential chapter authors for this chapter. Using their knowledge of the Northeast’s landscape and challenges, the CLA and CL used the list of national chapter topics that would be most relevant for the region. That topical list was associated with scientific expertise and a subset of the author list.

In the second phase, the CLA and CL used both the list of nominees as well as other scientists from around the region to build an author team that was representative of the Northeast’s geography, institutional affiliation (federal agencies and academic and research institutions), depth of subject matter expertise, and knowledge of selected regional topics. Eleven authors were thus identified by December 2016, and the twelfth author was invited in April 2017 to better represent tribal knowledge in the chapter.

Lastly, the authors were contacted by the CL to determine their level of interest and willingness to serve as experts on the region’s topics of water resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues.

On the due diligence of determining the region’s topical areas of focus

The first two drafts of the Northeast chapter were structured around the themes of water resources, agriculture and natural resources, oceans and marine ecosystems, coastal issues, health, and the built environment and urban issues. During the USGCRP-sponsored Regional Engagement Workshop held in Boston on February 10, 2017, feedback was solicited from approximately 150 online participants (comprising transportation officials, coastal managers, urban planners, city managers, fisheries managers, forest managers, state officials, and others) around the Northeast and other parts of the United States, on both the content of these topical areas and important focal areas for the region. Additional inputs were solicited from other in-person meetings such as the ICNet workshop and American Association of Geographers meetings, both held in April 2017. All feedback was then compiled with the lessons learned from the USGCRP CLA-CL meeting in Washington, DC, also held in April 2017. On April 28, 2017, the author team met in Burlington, Vermont, and reworked the chapter’s structure around the risk-based framing of interest to 1) changing seasonality, 2) coastal/ocean resources, 3) rural communities and livelihoods, 4) urban interconnectedness, and 5) adaptation.
Key Message 1

Changing Seasons Affect Rural Ecosystems, Environments, and Economies

The seasonality of the Northeast is central to the region’s sense of place and is an important driver of rural economies. Less distinct seasons with milder winter and earlier spring conditions (very high confidence) are already altering ecosystems and environments (high confidence) in ways that adversely impact tourism (very high confidence), farming (high confidence), and forestry (medium confidence). The region’s rural industries and livelihoods are at risk from further changes to forests, wildlife, snowpack, and streamflow (likely).

Description of evidence base

Multiple lines of evidence show that changes in seasonal temperature and precipitation cycles have been observed in the Northeast. Projected increases in winter air temperatures under lower and higher scenarios (RCP4.5 and RCP8.5) will result in shorter and milder cold seasons, a longer frost-free season, and decreased regional snow cover and earlier snow-melt. Observed seasonal changes to streamflows in response to increased winter precipitation, changes in snow hydrology, and an earlier but prolonged transition into spring are projected to continue.

These changes are affecting a number of plant and animal species throughout the region, including earlier bloom times and leaf-out, spawning, migration, and insect emergence, as well as longer growing seasons, delayed senescence, and enhanced leaf color change. Milder winters will likely contribute to the range expansion of wildlife and insect species, increase the size of certain herbivore populations and their exposure to parasitism, and increase the vulnerability of an array of plant and animal species to change.

Warmer winters will likely contribute to declining yields for specialty crops and fewer operational days for logging and snow-dependent recreation. Excess moisture is the leading cause of crop loss in the Northeast, and the observed increase in precipitation amount, intensity, and persistence is projected to continue under both lower and higher scenarios.

Major uncertainties

Warmer fall temperatures affect senescence, fruit ripening, migration, and hibernation, but are less well studied in the region and must be considered alongside other climatic factors such as drought. Projections for summer rainfall in the Northeast are uncertain, but evaporative demand for surface moisture is expected to increase with projected increases in summer temperatures. Water use is highest during the warm season, how much this will affect water availability for agricultural use depends on the frequency and intensity of drought during the growing season.

Description of confidence and likelihood

There is high confidence that the combined effects of increasing winter and early-spring temperatures and increasing winter precipitation are changing aquatic and terrestrial habitats and affecting the species adapted to them. The impact of changing seasonal temperature, moisture conditions, and habitats will vary geographically and impact interactions
among species. It is likely that some will not adapt. There is high confidence that over the next century, some species will decline while other species introduced to the region thrive as conditions change. There is high confidence that increased precipitation in early spring will negatively impact farming, but the response of vegetation to future changes in seasonal temperature and moisture conditions depends on plant hardiness for medium confidence in the level of risk to specialty crops and forestry. A reduction in the length of the snow season by mid-century is highly likely under lower and higher scenarios, with very high confidence that the winter recreation industry will be negatively impacted by the end of the century under lower and higher scenarios (RCP4.5 and RCP8.5).

Key Message 2

Changing Coastal and Ocean Habitats, Ecosystem Services, and Livelihoods

The Northeast’s coast and ocean support commerce, tourism, and recreation that are important to the region’s economy and way of life. Warmer ocean temperatures, sea level rise, and ocean acidification (high confidence) threaten these services (likely). The adaptive capacity of marine ecosystems and coastal communities will influence ecological and socioeconomic outcomes as climate risks increase (high confidence).

Description of evidence base

Warming rates on the Northeast Shelf have been higher than experienced in other ocean regions, and climate projections indicate that warming in this region will continue to exceed rates expected in other ocean regions. Multiple lines of research have shown that changes in ocean temperatures and acidification have resulted in distribution, productivity, and phenology shifts in marine populations. These shifts have impacted marine fisheries and prompted industry adaptations to changes.

Research also shows that sea level rise has been and will be higher in the Northeast with respect to the rest of the United States due largely to vertical land movement, varying atmospheric shifts and ocean dynamics, and ice mass loss from the polar regions. High tide flooding has increased and will continue to increase, and storm surges due to stronger and more frequent hurricanes have been and will be amplified by sea level rise. Climate-related coastal impacts on the landscape include greater potential for coastal flooding, erosion, overwash, barrier island breaching and disaggregation, and marsh conversion to open water, which will directly affect the ability of ecosystems to sustain many of the services they provide. Changes to salt marshes in response to sea level rise have already been observed in some coastal settings in the region, although their impacts are site specific and variable. Studies quantifying sea level rise impacts on other types of coastal settings (such as beaches) in the region are more limited; however, there is consensus on what impacts under higher rates of relative sea level rise might look like due to geologic history and modern analogs elsewhere (such as the Louisiana coast). Although probabilistically low, worst-case sea level rise projections that account for ice sheet collapse would result in sea level rise rates far beyond the rates at which natural systems are likely able to adapt, affecting not only ecosystems function and services but also likely substantially changing the coastal landscape largely through inundation.
Major uncertainties

Although work to value coastal and marine ecosystems services is still evolving\(^6,41,281\), changes to coastal ecosystem services will depend largely on the adaptability of the coastal landscape, direct hits from storms, and rate of sea level rise, which have identified uncertainties. Lower sea level rise rates are more probable, though the timing of ice sheet collapse\(^407\) and the variability of ocean dynamics are still not well understood\(^210,211,215\) and will dramatically affect the rate of rise.\(^47,406\) It is also difficult to anticipate how humans will contend with changes along the coast\(^389\) and how adjacent natural settings will respond. Furthermore, specific tipping points for many coastal ecosystems are still not well resolved\(^275,277,280\) and vary due to site-specific conditions\(^224,274\).

The Northeast Shelf is sensitive to ocean acidification, and many fisheries in the region are dependent on shell-forming organisms.\(^181,182,186\) However, few studies that have investigated the impacts of ocean acidification on species biology and ecology used native populations from the region\(^182\) or tested the effects at acidification levels expected over the next 20–40 years.\(^143\) Moreover, there are limited studies that consider the effects of climate change in conjunction with multiple other stressors that affect marine populations.\(^39,40,178,408\) Limited understanding of the adaptive capacity of species to environmental changes presents major uncertainties in ecosystem responses to climate change.\(^143,408\) How humans will respond to changes in ecosystems is also not well known, yet these decisions will shape how marine industries and coastal communities are affected by climate change.\(^45\)

Description of confidence and likelihood

Warming ocean temperatures (high confidence), acidification (high confidence), and sea level rise (very high confidence) will alter coastal and ocean ecosystems (likely) and threaten the ecosystems services provided by the coasts and oceans (likely) in the Northeast. There is high confidence that ocean temperatures have caused shifts in the distribution, productivity, and phenology of marine species and very high confidence that high tide flooding and storm surge impacts are being amplified by sea level rise. Because much will depend on how humans choose to address or adapt to these problems, and as there is considerable uncertainty over the extent to which many of these coastal systems will be able to adapt, there is medium confidence in the level of risk to traditions and livelihoods. It is likely that under higher scenarios, sea level rise will significantly alter the coastal landscape, and rising temperatures and acidification will affect marine populations and fisheries.

Key Message 3

Maintaining Urban Areas and Communities and Their Interconnectedness

The Northeast’s urban centers and their interconnections are regional and national hubs for cultural and economic activity. Major negative impacts on critical infrastructure, urban economies, and nationally significant historic sites are already occurring and will become more common with a changing climate. (High Confidence)
Description of evidence base

The urban built environment and related supply and management systems are at increased risk of disruption from a variety of increasing climate risks. These risks emerge from accelerated sea level rise as well as increased frequency of coastal and estuarine flooding, intense precipitation events, urban heating and heat waves, and drought.

Coastal flooding can lead to adverse health consequences, loss of life, and damaged property and infrastructure. Much of the region's major industries and cities are located along the coast, with 88% of the region's population and 68% of the regional gross domestic product. High tide flooding is also increasingly problematic and costly. Rising sea level and amplified storm events can increase the magnitude and geographic size of a coastal flood event. The frequency of dangerous coastal flooding in the Northeast would more than triple with 2 feet of sea level rise. In Boston, the areal extent of a 1% (1 in 100 chance of occurring in any given year) flood is expected to increase multifold in many coastal neighborhoods. However, there will likely be notable variability across coastal locations. Using the 2014 U.S. National Climate Assessment’s Intermediate-High scenario for sea level rise (a global rise of 1.2 meters by 2100), the median number of flood events per year for the Northeast is projected to increase from 1 event per year experienced today to 5 events by 2030 and 25 events by 2045, with significant variation within the region.

Intense precipitation events can lead to riverine and street-level flooding affecting urban environments. Over recent decades, the Northeast has experienced an increase of intense precipitation events, particularly in the spring and fall. From 1958 to 2016, the number of heaviest 1% precipitation events (that is, an event that has a 1% chance of occurring in any given year) in the Northeast has increased by 55%. A recent study suggests that this trend began rather abruptly after 1996, though uniformly across the region.

Urban heating and heat waves threaten the health of the urban population and the integrity of the urban landscape. Due to the urban heat island effect, summer surface temperatures across Northeast cities were an average of 13°F to 16°F (7°C to 9°C) warmer than surrounding rural areas over a three-year period, 2003 to 2005. This is of concern, as rising temperatures increase heat- and pollution-related mortality while also stressing energy demands across the urban environment. However, the degree of urban heat island intensity varies across cities depending on local factors such as whether the city is coastal or inland. Recent analysis of mortality in major cities of the Northeast suggests that the region could experience an additional 2,300 deaths per year by 2090 from extreme heat under RCP8.5 (compared to an estimated 970 deaths per year under the lower scenario, RCP4.5) compared to 1989–2000. Another study that considered 1,692 cities around the world suggested that without mitigation, total economic costs associated with climate change could be 2.6 times higher due to the warmer temperatures in urban versus extra-urban environments.

Changes in temperature and precipitation can have dramatic impacts on urban water supply available for municipal and industrial uses. Under a higher scenario (RCP8.5), the Northeast is projected to experience cumulative losses of $730 million (discounted at 3% in 2015 dollars) due to water supply shortfalls for the period 2015 to 2099. Under a lower scenario (RCP4.5), the Northeast is projected to sustain losses of $510 million (discounted at 3% in 2015 dollars). The losses are largely projected for the more southern and coastal areas in the region.
Major uncertainties

Projecting changes in urban pollution and air quality under a changing climate is challenging given the associated complex chemistry and underlying factors that influence it. For example, fine particulates (PM\(_{2.5}\); that is, particles with a diameter of or less than 2.5 micrometers) are affected by cloud processes and precipitation, amongst other meteorological processes, leading to considerable uncertainty in the geographic distribution and overall trend in both modeling analysis and the literature.\(^{29}\) Land use can also play an unexpected role, such as planting trees as a mitigation option that may lead to increases in volatile organic compounds (VOCs), which, in a VOC-limited environment that can exist in some urban areas such as New York City, may increase ozone concentrations (however, it is noted that most of the Northeast region is limited by the availability of nitrogen oxides).\(^{327}\)

Interdependencies among infrastructure sectors can lead to unexpected and amplified consequences in response to extreme weather events. However, it is unclear how society may choose to invest in the built environment, possibly strengthening urban infrastructure to plausible future conditions.

Description of confidence and likelihood

There is high confidence that weather-related impacts on urban centers already experienced today will become more common under a changing climate. For the Northeast, sea level rise is projected to occur at a faster rate than the global average, potentially increasing the impact of moderate and severe coastal flooding.\(^{47}\)

By the end of the century and under a higher scenario (RCP8.5), Coupled Model Intercomparison Project Phase 5 (CMIP5) models suggest that annual average temperatures will increase by more than 9°F (16°C) for much of the region (2071–2100 compared to 1976–2005), while precipitation is projected to increase, particularly during winter and spring.\(^{50}\)

Extreme events that impact urban environments have been observed to increase over much of the United States and are projected to continue to intensify. There is high confidence that heavy precipitation events have increased in intensity and frequency since 1901, with the largest increase in the Northeast, a trend projected to continue.\(^{50}\) There is very high confidence that extreme heat events are increasing across most regions worldwide, a trend very likely to continue.\(^{50}\) Extreme precipitation from tropical cyclones has not demonstrated a clear observed trend but is expected to increase in the future.\(^{50,253}\) Research has suggested that the number of tropical cyclones will overall increase with future warming.\(^{416}\) However, this finding is contradicted by results using a high-resolution dynamical downscaling study under a lower scenario (RCP4.5), which suggests overall reduction in frequency of tropical cyclones but an increase in the occurrence of storms of Saffir–Simpson categories 4 and 5.\(^{50}\)
Key Message 4

Threats to Human Health

Changing climate threatens the health and well-being of people in the Northeast through more extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise (*very high confidence*). These environmental changes are expected to lead to health-related impacts and costs, including additional deaths, emergency room visits and hospitalizations, and a lower quality of life (*very high confidence*). Health impacts are expected to vary by location, age, current health, and other characteristics of individuals and communities (*very high confidence*).

Description of evidence base

Extreme storms and temperatures, overall warmer temperatures, degradation of air and water quality, and sea level rise are all associated with adverse health outcomes from heat, poor air quality, disease-transmitting vectors, contaminated food and water, harmful algal blooms, and traumatic stress or health service disruption. The underlying susceptibility of populations determines whether or not there are health impacts from an exposure and the severity of such impacts.

Major uncertainties

Uncertainty remains in projections of the magnitude of future changes in particulate matter, humidity, and wildfires and how these changes may influence health risks. For example, health effects of future extreme heat may be exacerbated by future changes in absolute or relative humidity.

Health impacts are ultimately determined by not just the environmental hazard but also the amount of exposure, size and underlying susceptibility of the exposed population, and other factors such as health insurance coverage and access to timely healthcare services. In projecting future health risks, researchers acknowledge these challenges and use different analytic approaches to address this uncertainty or note it as a limitation.

In addition, there is a paucity of literature that considers the joint or cumulative impacts on health of multiple climatic hazards. Additional areas where the literature base is limited include specific health impacts related to different types of climate-related migration, the impact of climatic factors on mental health, and the specific timing and geographic range of shifting disease-carrying vectors.

Description of confidence and likelihood

There is *very high confidence* that extreme weather, warmer temperatures, degradation of air and water quality, and sea level rise threaten the health and well-being of people in the Northeast. There is *very high confidence* that these climate-related environmental changes will lead to additional adverse health-related impacts and costs, including premature deaths, more emergency department visits and hospitalizations, and lower quality of life. There is *very high confidence* that climate-related health impacts will vary by location, age, current health, and other characteristics of individuals and communities.
Key Message 5

Adaptation to Climate Change Is Underway

Communities in the Northeast are proactively planning (*high confidence*) and implementing (*medium confidence*) actions to reduce risks posed by climate change. Using decision support tools to develop and apply adaptation strategies informs both the value of adopting solutions and the remaining challenges (*high confidence*). Experience since the last assessment provides a foundation to advance future adaptation efforts (*high confidence*).

Description of evidence base

Reports on climate adaptation and resilience planning have been published by city, state, and tribal governments and by regional and federal agencies in the Northeast. Examples include the Interstate Commission on the Potomac River Basin (for the Washington, DC, metropolitan area),\(^{304}\) Boston,\(^{295}\) the Port Authority of New York and New Jersey,\(^{357}\) the St. Regis Mohawk Tribe,\(^{360}\) the U.S. Army Corps of Engineers,\(^{368}\) the State of Maine,\(^{381}\) and southeastern Connecticut.\(^{417}\) Structured decision-making is being applied to design management plans, determine research needs, and allocate resources\(^{365}\) to preserve habitat and resources throughout the region.\(^{151,366,367}\)

Major uncertainties

The percentage of communities in the Northeast that are planning for climate adaptation and resilience and the percentage of those using decision support tools are not known. More case studies would be needed to evaluate the effectiveness of adaptation actions.

Description of confidence and likelihood

There is *high confidence* that there are communities in the Northeast undertaking planning efforts to reduce risks posed from climate change and *medium confidence* that they are implementing climate adaptation. There is *high confidence* that decision support tools are informative and *medium confidence* that these communities are using decision support tools to find solutions for adaptation that are workable. There is *high confidence* that early adoption is occurring in some communities and that this provides a foundation for future efforts. This Key Message does not address trends into the future, and therefore likelihood is not applicable.
References

31. New York Climate Change Science Clearinghouse, 2018: [web site]. https://nyclimatescience.org/

32. Beach SAMP, 2018: STORMTOOLS [web tool]. Rhode Island Shoreline Change Special Area Management Plan (Beach SAMP), Kingston, RI. http://www.beachsamp.org/stormtools/

34. CDC, 2015: CDC’s Building Resilience Against Climate Effects (BRACE) Framework [web site]. Centers for Disease Control and Prevention (CDC), Atlanta, GA. https://www.cdc.gov/climateandhealth/BRACE.htm

60. Azevedo de Almeida, B. and A. Mostafavi, 2016: Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. Sustainability, 8 (11), 1115. http://dx.doi.org/10.3390-su8111115

79. StateFarm, 2017: Chances of Hitting a Deer in My State [web site]. StateFarm, Bloomington, IL, last modified October 2. https://newsroom.statefarm.com/deer-collision-damage-claim-costs-up/

108. Ning, L. and R.S. Bradley, 2015: Snow occurrence changes over the central and eastern United States under future warming scenarios. Scientific Reports, 5, 17073. http://dx.doi.org/10.1038/srep17073

188. Grieve, B.D., J.A. Hare, and V.S. Saba, 2017: Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Scientific Reports, 7 (1), 6264. http://dx.doi.org/10.1038/s41598-017-06524-1

U.S. Global Change Research Program

Fourth National Climate Assessment

731

