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Key Message 1 

Interactions Among Sectors
The sectors and systems exposed to climate (for example, energy, water, and agriculture) 
interact with and depend on one another and other systems less directly exposed to 
climate (such as the financial sector). In addition, these interacting systems are not only 
exposed to climate-related stressors such as floods, droughts, and heat waves, they are 
also subject to a range of non-climate factors, from population movements to economic 
fluctuations to urban expansion. These interactions can lead to complex behaviors 
and outcomes that are difficult to predict. It is not possible to fully understand the 
implications of climate change on the United States without considering the interactions 
among sectors and their consequences. 

Key Message 2

Multisector Risk Assessment 
Climate change risk assessment benefits from a multisector perspective, encompassing 
interactions among sectors and both climate and non-climate stressors. Because such 
interactions and their consequences can be challenging to identify in advance, effectively 
assessing multisector risks requires tools and approaches that integrate diverse evidence 
and that consider a wide range of possible outcomes.

Landslide blocking a road in California
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Key Message 3

Management of Interacting Systems
The joint management of interacting systems can enhance the resilience of 
communities, industries, and ecosystems to climate-related stressors. For example, 
during drought events, river operations can be managed to balance water demand 
for drinking water, navigation, and electricity production. Such integrated approaches 
can help avoid missed opportunities or unanticipated tradeoffs associated with the 
implementation of management responses to climate-related stressors.

Key Message 4

Advancing Knowledge
Predicting the responses of complex, interdependent systems will depend on developing 
meaningful models of multiple, diverse systems, including human systems, and 
methods for characterizing uncertainty.

Executive Summary

The world we live in is a web of natural, built, 
and social systems—from global and regional 
climate; to the electric grid; to water manage-
ment systems such as dams, rivers, and canals; to 
managed and unmanaged forests; and to financial 
and economic systems. Climate affects many of 
these systems individually, but they also affect 
one another, and often in ways that are hard to 
predict. In addition, while climate-related risks 
such as heat waves, floods, and droughts have 
an important influence on these interconnected 
systems, these systems are also subject to a range 
of other factors, such as population growth, 
economic forces, technological change, and 
deteriorating infrastructure. 

A key factor in assessing risk in this context is 
that it is hard to quantify and predict all the 
ways in which climate-related stressors might 
lead to severe or widespread consequences for 
natural, built, and social systems. A multisector 
perspective can help identify such critical risks 
ahead of time, but uncertainties will always 
remain regarding exactly how consequences 
will materialize in the future. Therefore, 

effectively assessing multisector risks requires 
different tools and approaches than would be 
applied to understand a single sector by itself.

In interacting systems, management responses 
within one system influence how other systems 
respond. Failure to anticipate interdependencies 
can lead to missed opportunities for managing 
the risks of climate change; it can also lead to 
management responses that increase risks to 
other parts of the system. Despite the challenge 
of managing system interactions, there are 
opportunities to learn from experience to guide 
future risk management decisions. 

There is a large gap in the multisector and mul-
tiscale tools and frameworks that are available to 
describe how different human systems interact 
with one another and with the earth system, 
and how those interactions affect the total 
system response to the many stressors they are 
subject to, including climate-related stressors. 
Characterizing the nature of such interactions 
and building the capacity to model them are 
important research challenges.
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Sectors are interacting and interdependent through physical, social, institutional, environmental, and economic linkages. These 
sectors and the interactions among them are affected by a range of climate-related and non-climate influences. From Figure 17.1 
(Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University).

Complex Sectoral Interactions
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Introduction

The world we live in is a web of natural, built, 
and social systems—from global and regional 
climate; to the electric grid; to water man-
agement systems such as dams, rivers, and 
canals; to managed and unmanaged forests; 
and to financial and economic systems. Climate 
affects many of these systems individually, 

but they also affect one another, and often 
in ways that are hard to predict. In addition, 
while climate-related risks such as heat waves, 
floods, and droughts have an important influ-
ence on these interdependent systems, these 
systems are also subject to a range of other 
factors, such as population growth, economic 
forces, technological change, and deteriorating 
infrastructure (Figure 17.1).

Figure 17.1: Sectors are interacting and interdependent through physical, social, institutional, environmental, and economic 
linkages. These sectors and the interactions among them are affected by a range of climate-related and non-climate influences. 
Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University.

Complex Sectoral Interactions
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Assessing the risks associated with climate 
change requires us to acknowledge that 
understanding the risks to individual sectors is 
important but may not always be sufficient to 
characterize the risks to interdependent sys-
tems. Improved understanding of the complex 
dynamics that arise from interactions among 
systems is therefore essential to understand 
risk and manage our response to a changing 
climate. Characterizing the nature of such 
interactions and building the capacity to model 
them are important research challenges.

Regional and Sectoral Summary

Examples of interactions among sectors and 
systems can be found across the regions in this 
assessment. The cascading failures resulting from 
hurricanes are considerations across several 
coastal regions, including the Southern Great 
Plains (for example, Hurricane Harvey in 2017; see 
Box 17.1), the Southeast (for example, Hurricane 
Irma in 2017), and the Caribbean (for example, 
Hurricane Maria in 2017). Energy, water, and land 
systems subject to both climate-related stressors 
(such as droughts and heat waves) and non- 
climate influences (such as changes to population, 
urbanization, and economic development) are 
important considerations in the Southwest, the 
Southern Great Plains (for example, the 2012–2015 

drought in Texas), and the Northwest (for 
example, the snow drought in Oregon in 2015). 
The feedbacks between forest fires and water 
quality and availability have created challenges in 
regions including the Southeast (for example, the 
Appalachian region in 2016) and the Southwest 
(for example, the Sierra Nevada range over the 
last five years). Changes in arctic permafrost have 
caused significant erosion, leading to new risks 
in transportation and human health in Alaska. 
The natural gas and other energy industries rely 
on the effective management of not only rail-
roads and transportation networks but also the 
diminishing water supply in the Northern Great 
Plains region. A need for cross-sector planning 
for climate change impacts in the Great Lakes 
region has led to new adaptation networks in the 
Midwest. In Hawai‘i, increasing ocean tempera-
tures and ocean acidification threaten coral reefs 
and marine biodiversity, with attendant economic 
impacts to tourism, fishery yields, and popula-
tions who depend on these for their livelihoods. 
Increasingly frequent and intense storms, heavy 
precipitation events, warmer water temperatures, 
and a rise in sea level in the Chesapeake Bay 
in the Northeast are projected to impact local 
populations, who depend on productive fisheries 
and ecosystems for their livelihoods, resourc-
es, and culture. 

Box 17.1: Hurricane Harvey: Cascading Failures and Lessons from Emerging 
Management Approaches
Hurricane Harvey, which struck Houston, Texas, in August 2017 (Figure 17.2), provides a clear example of how 
impacts from extreme weather events can cascade through tightly connected natural, built, and social systems 
exposed to severe climate-related stressors (see Key Message 1) (see also Ch. 23: S. Great Plains, Box 23.1 for 
more information on Hurricane Harvey). Harvey knocked out power to 300,000 customers in Texas,1 with cas-
cading effects on critical infrastructure facilities such as hospitals, water and wastewater treatment plants, and 
refineries. Eleven percent of U.S. refining capacity and a quarter of oil production from the U.S. Gulf of Mexico 
were shut down. Actual and anticipated gasoline shortages caused price spikes regionally and nationally.2

In addition to causing direct death and injury, the storm affected public health by disrupting supporting sys-
tems. In addition, floodwaters carried toxins and pathogens. Flooding inundated a total of 43 EPA Superfund 
toxic sites (damaging the protective cap at one site and leading to a short-term release of dioxins), and flooded 
wastewater treatment plants spilled untreated sewage.3  Although most hospitals were able to remain open 
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Box 17.1: Hurricane Harvey: Cascading Failures and Lessons from Emerging  
Management Approaches, continued 
(sometimes on backup power), their ability to serve their patients was strained. Widespread power outages 
forced evacuations that exceeded the emergency shelter capacity, and otherwise healthy people who had no 
access to shelters or needed power for medical devices turned to hospitals. Roadways clogged with debris, and 
floodwater hampered the ability to get supplies and evacuate vulnerable patients. Disrupted communications 
networks interfered with hospitals’ ability to coordinate with each other and emergency services.4

These interconnected infrastructure systems operate within the context of non-climate influences, including 
social institutions and policy environments (see Key Message 3) (see also Ch. 11: Urban, Key Message 3). For 
example, in the area affected by Hurricane Harvey, regional land management practices over the last several de-
cades have reduced the area covered by wetlands, forests, and prairies, which historically absorbed storm water 
runoff.5 These natural environments have been increasingly replaced with impermeable surfaces, decreasing 
Houston’s resilience to flooding.5

Hurricanes have struck densely populated, interconnected U.S. urban systems several times, including Hurricane 
Katrina in New Orleans in 2005 and Superstorm Sandy in New York City in 2012. While each city and storm is unique, 
planners and decision-makers can learn from past events and outstanding examples of resilience. During Harvey, the 
Texas Medical Center in Houston, the world’s largest medical center, remained fully functional despite disruptions to 
transportation, water, and electricity, in large part due to lessons learned and resilience investments made following 

the devastation of Tropical 
Storm Allison in 2001 and Hur-
ricane Ike in 2008.6 In the af-
termath of Superstorm Sandy, 
the mayor of New York City ex-
plicitly brought climate-related 
risks into response planning 
and called for a more holistic 
risk management strategy 
(see Key Message 3), initiated 
through the Special Initiative 
for Rebuilding and Resilien-
cy and the Climate Change 
Adaptation Task Force.7 This 
task force brought together 
stakeholders from major infra-
structure and health sectors 
such as water, transportation, 
energy, and communications 
to recognize and address 
interdependencies.

Figure 17.2: Hurricane Harvey led to widespread flooding and knocked out power to 
300,000 customers in Texas in 2017, with cascading effects on critical infrastructure 
facilities such as hospitals, water and wastewater treatment plants, and refineries. The 
photo shows Port Arthur, Texas, on August 31, 2017—six days after Hurricane Harvey 
made landfall along the Gulf Coast. Photo credit: Staff Sgt. Daniel J. Martinez, U.S. Air 
National Guard.
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Key Message 1 
Interactions Among Sectors

The sectors and systems exposed to 
climate (for example, energy, water, and 
agriculture) interact with and depend 
on one another and other systems less 
directly exposed to climate (such as the 
financial sector). In addition, these inter-
acting systems are not only exposed to 
climate-related stressors such as floods, 
droughts, and heat waves, they are also 
subject to a range of non-climate factors, 
from population movements to economic 
fluctuations to urban expansion. These 
interactions can lead to complex behav-
iors and outcomes that are difficult to 
predict. It is not possible to fully under-
stand the implications of climate change 
on the United States without considering 
the interactions among sectors and 
their consequences.

The sectors and systems subject to climate- 
related risks do not exist in isolation; they 
interact with one another and with other 
sectors and systems. For example, agricultural 
systems require water for irrigation, which is 
supplied from lakes, rivers, dams, and reser-
voirs. Forest management influences the runoff 
that makes its way into these water systems. 
Electricity systems use water for hydroelectric 
power as well as for cooling thermoelectric 
power plants. Many urban transportation sys-
tems rely on electricity to power subways and 
buses. Meanwhile, medical services, and public 
health more broadly, are enabled by transpor-
tation, water, electricity, and communications 
(Ch. 11: Urban, KM 3). To most effectively assess 
the risks associated with climate-related 
stressors such as floods, droughts, or heat 
waves, the interactions among these systems 
must be considered in addition to the effects of 
these stressors on individual systems.8

In addition, climate-related stressors are not 
the only influences to which natural, built, and 
social systems are exposed. For example, popu-
lation movements and demographic changes, 
economic growth, and changes in industrial 
activity can all influence systems exposed to 
climate-related stressors as well as systems 
that interact with them (see, for example, Box 
17.3). Such factors can have powerful impacts 
on these systems or alter their vulnerability 
to climate-related stressors. For example, 
rapid population growth in the coastal 
United States over the past half-century has 
significantly increased society’s exposure to 
extreme weather events like hurricanes.9 These 
demographic trends may have a greater impact 
on future hurricane damages than sea level rise 
or changes in storm intensity.10

A long history of research on complex systems 
(e.g., Simon 200011), spanning disciplines from 
meteorology12 to ecology13 to paleontology14 to 
computer science, 15 has shown that systems 
that depend on one another are subject to new 
and often complex behaviors that do not emerge 
when these systems are considered in isolation. 
These behaviors, in turn, raise the prospect of 
unanticipated, and potentially catastrophic, 
risks.16 For example, failures can cascade from one 
system to another; that is, failures in one system 
can lead to increased risks or failures in other 
systems. Such cascades have been observed with 
Hurricane Harvey (see Box 17.1), the Northeast 
blackout (see Box 17.5),17 and erosion and perma-
frost thaw in Alaska (Ch. 26: Alaska, KM 3), where 
failures in physical infrastructure systems had 
downstream consequences for human health 
and safety. Tightly connected supply chains 
can quickly transmit impacts from events such 
as floods, droughts, heat waves, and tropical 
cyclones in one region or part of the world to 
systems in another (see Ch. 16: International, 
KM 1). For example, the spike in food prices in 
2010–2011 was driven in part by drought-related 
declines in production of basic grains in Australia 
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and Eastern Europe, which provided a short-term 
income increase to U.S. farmers of those com-
modities (see Ch. 16: International, KM 1).18

Similarly, changes in one part of a system may 
alter the thresholds and tipping points in other 
parts of the system (see Kopp et al. 201719). For 
example, the overuse and depletion of groundwa-
ter removes a backstop in times of drought (see 
Box 17.3). Forest wildfires can affect water and 
air quality and render soil impermeable, altering 
both health and flood risks (see Box 17.4). Inter-
actions among systems can also buffer systems 
from shocks and introduce a measure of system 
stability or recovery potential that might not have 

Box 17.2: Uncovering System Complexities: Wolves and the Yellowstone Ecosystem
One challenge in understanding interconnected 
systems is that interactions are often not revealed 
until some stress or intervention occurs (see Key 
Message 1). In addition, societal values and ac-
tions can play an important role in such systems. A 
non-climate example illustrates this challenge very 
clearly—the consequences of the 1995 reintroduc-
tion of wolves into the Yellowstone National Park 
ecosystem.20 Concurrent with the eradication of 
wolves in the early 20th century, streamside willow 
populations declined as elk herds grew and browsed 
them more heavily. Willows along the small stream 
network were reduced to short stature or eliminated 
entirely. Beavers abandoned streams that lacked 
willows needed for food and dam construction. In spite of the controversy over wolf reintroductions because of 
predation on livestock, the National Park Service reintroduced wolves in 1995–1996.21 Since wolves have been 
reintroduced, there have been some effects on willow stands, but these appear to largely be due to reductions 
in overall elk number, rather than strictly to behavioral responses to the presence of the wolves.22 But in areas 
where beavers were also lost, the overall system has not returned to its state before the eradication of wolves. 
The changes due to the loss of beavers have apparently reduced the capacity of the system to return to its origi-
nal state, even when the wolves returned.23,24 This example illustrates the unpredictable nature of complex, inter-
connected systems and how they may react to multiple stressors and interventions driven by societal decisions. 
It also illustrates that there is no guarantee that such systems, once perturbed, will return to their original state 
when management actions are taken.25 Because climate change is a stress that is outside the recent experi-
ence of species in many ecosystems, it, too, may uncover complexities due to ecosystem-level interactions that 
might not be immediately apparent.

A lone gray wolf in Yellowstone National Park. © Michelle 
Callahan/Flickr (CC BY 2.0).

otherwise existed (see Box 17.5). For example, 
social networks, which are increasingly reflected 
in social media enabled by communications 
infrastructure, can have an important influence 
on the resilience of communities to natural 
hazards. Compound events, such as simultaneous 
temperature extremes and drought, can produce 
greater economic costs than events considered 
separately.19 The complexity of the interactions 
that exist among these various systems limits the 
ability to predict the consequences of climate- 
related stressors with confidence. This poses 
important challenges for risk assessment as well 
as the management of those risks.

https://creativecommons.org/licenses/by/2.0/legalcode


17 | Sector Interactions, Multiple Stressors, and Complex Systems

647 Fourth National Climate AssessmentU.S. Global Change Research Program 

Box 17.3: Energy, Water, and Land Linkages
Climate-related stressors such as extreme temperatures, large precipitation events, floods, and droughts 
highlight the interactions among energy, water, and land systems. These climate-related stressors also interact 
with non-climate influences such as population, markets, technology, and infrastructure to affect energy, water, 
and land systems individually as well as the dynamics between these sectors. Understanding how risks evolve 
under a changing climate, and classifying which risks are the most consequential, poses a significant challenge 
but is critically important to develop response strategies that enhance resilience across systems. Risks to ener-
gy, water, and land systems must be considered in the context of both climate-related and non-climate-related 
influences as well as the broader social and institutional context (Figure 17.3). As risks evolve, the vulnerabili-
ties and exposure rates for energy, water, and land systems also evolve (see Key Message 1).26

Energy–Water–Land Interactions

Figure 17.3: Energy, water, and land systems are interconnected and impacted by both climate-related and non-climate 
stressors. These influences affect these systems individually as well as the dynamics among these sectors. A multisector 
perspective is necessary to understand risks and develop response strategies that enhance resilience across multiple 
systems. Sources: Pacific Northwest National Laboratory, Arizona State University, and Cornell University.
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Key Message 2 
Multisector Risk Assessment

Climate change risk assessment benefits 
from a multisector perspective, encom-
passing interactions among sectors and 
both climate and non-climate stressors. 
Because such interactions and their 
consequences can be challenging to 
identify in advance, effectively assessing 
multisector risks requires tools and 
approaches that integrate diverse evi-
dence and that consider a wide range of 
possible outcomes. 

The number and complexity of possible 
interactions among systems affected by 
climate expand the scope of climate change 
risk assessment. Recent assessments have 
acknowledged the importance of this expanded 
perspective. For example, Chapter 10 of the 
Third National Climate Assessment (NCA3) 44 
highlighted interactions among energy, water, 
and land systems that people and economies 
depend on. Other recent climate change 
impact assessments (e.g., Oppenheimer et 
al. 2014, Houser et al. 2015, Rosenzweig et al. 
201745,46,47) have highlighted risks emerging 
from interactions among different sectors, 
geographic regions, and stressors.

Box 17.3: Energy, Water, and Land Linkages, continued
The interactions between climate, energy, water, and land in California present a compelling example that 
illustrates the need to understand complex systems to develop response strategies. Hydropower generation 
supplies an average of 15% of the state’s total electricity consumption,27 while at the same time the state’s 
thermoelectric power plants rely on water for cooling. Meanwhile, the State Water Project is California’s largest 
single electricity consumer, demanding an average of 2%–3% of total generation for pumping and conveyance.28 
This emphasizes the importance of water for energy and of energy for water.29 The state’s agricultural sector de-
mands approximately 40% of average available freshwater30 and uses substantial amounts of summer seasonal 
peak load electricity to pump groundwater, particularly during droughts. Along with uncertainty about future 
drought and precipitation extremes,19,31,32 California faces an increasing population, deteriorating infrastructure, 
and potential energy and water resource limits for an agricultural sector that is evolving to depend on declining 
groundwater aquifers (Ch. 25: Southwest, KM 1).

The complexity of interconnected energy, water, and land systems highlights the potential impacts of societal 
choices and the need for institutional integration to explicitly account for sectoral interdependencies and multi-
ple stressors (see Key Message 3).33,34 Choices in any one sector to confront the many climate-related stressors 
facing that sector (such as floods, droughts, deteriorating infrastructure, land surface subsidence [sinking], 
landslides, and wildfires) have the potential to yield cascading cost, reliability, and resilience impacts across the 
full, connected system (see Key Message 3).35,36,37,38,39 Taking California’s recent droughts as an example, when 
surface water supplies were strongly curtailed from 2002 to 2016, the result was increased well pumping to 
meet agricultural demands, which led to a loss of approximately 5.0 cubic miles (20.7 km3) of groundwater)40—
or about the size of Lake Powell. Increasing well depths and lost hydropower production influence farmers’ 
decisions about both capital investments in pumping wells and transitions to higher-profit tree and vine crops 
that cannot be fallowed.27 Using groundwater as a key economic backstop for agriculture during droughts raises 
significant concerns about the reversibility of aquifer depletions, the weakening of levees, and accelerating rates 
of land surface subsidence,35,39,41,42,43 all of which may alter the future resilience of California’s energy, water, and 
land systems to climate extremes (Ch. 25: Southwest, KM 1). 
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A key factor in assessing risk in this context is 
that it is hard to quantify all the ways in which 
climate-related stressors might lead to severe 
or widespread consequences for natural, built, 
and social systems. A multisector perspective 
can help identify critical risks ahead of time, but 
uncertainties will always remain regarding exactly 
how consequences will materialize in the future. 
In some cases, interactions are well known. For 
example, yearly fluctuations in river flows affect 
hydropower generation, in turn shaping energy 
costs and profits and reliance on other energy 
sources (see Box 17.3). Yet even in these cases, it 
is often difficult to quantify all relevant processes 
and interactions. Sometimes, interactions are 
only obvious in retrospect, such as those asso-
ciated with many past hurricanes (see Box 17.1) 
or the Northeast blackout (see Box 17.5), with 
impacts cascading through different parts of the 
built environment and affecting human health, 
well-being, and livelihoods. In still other cases, 
all the relevant interactions are simply not fully 
understood, for example in the context of the 
linkages between wildfires, pine bark beetles, and 
forest management (see Box 17.4).

Therefore, effectively assessing multisector risks 
requires different tools and approaches than 
would be applied to understand a single sector 
by itself. For example, as land management, 
infrastructure, and climate all change through 
time, statistical analysis of extreme weather 
events based on the past becomes less accurate 
in predicting future outcomes (Ch. 28: Adaptation, 
KM 2).48 Approaches can be applied to integrate 
diverse evidence, combining quantitative and 
qualitative results and drawing from the natural 
and social sciences and other forms of analy-
sis.49,50,51 As one example, models and numerical 
estimates can be complemented by methods 
quantifying expert judgment in order to consider 
uncertainties not well represented by the models. 
For instance, models and expert judgment have 
been used together to inform understanding of 
future sea level rise.52 Scenarios can also be used 
to explore preparedness across possible futures, 
including extreme outcomes that have been rare 
in historical experience but may be particularly 
consequential in the future.50,53,54,55 Such scenarios 
in assessment can inform understanding of 
different decisions and choices for managing 
climate risks, responding to uncertainties about 
the future by starting with goals and priori-
ties people have.

Box 17.4: Wildfires, Pine Bark Beetles, and Forest Management
Multiple stressors (see Key Message 1) act on U.S. forest ecosystems, impacting wildfire frequency and inten-
sity in complex ways (see Key Message 2) (see also Ch. 6: Forests, KM 1). In the western United States, partic-
ularly in Colorado and California, wildfires have become more frequent and larger in area (see Ch. 6: Forests, 
Figure 6.4; see also Ch. 24: Northwest, KM 1 for an additional example), and this trend is expected to continue 
as the climate warms (see Ch. 25: Southwest, KM 2).56 Drought, preceded by warm, wet seasons, can increase 
fuel flammability and availability. In addition to these climate-related stresses, choices about land use and 
land-cover change, increased pest populations, human migration, and earth system processes all impact forest 
ecosystems.56,57 The interaction of these stressors can alter the vulnerability of these systems, both exacerbat-
ing and diminishing the likelihood and impact of wildfire. For example, as humans have moved and expanded 
the wildland–urban interface, increased fire suppression practices have led to changes in vegetation structure.58 
Without natural fires, vegetation has become denser, resulting in significantly larger and more damaging wild-
fires.56 Meanwhile, the interaction of pests with wildfire includes feedback that is oftentimes nonlinear. Warmer 
winters have allowed pests such as the bark beetle to reach higher elevations and cause significant tree mortal-
ity.59 Insect-killed trees influence fuels and fire behavior, while in some cases wildfire can mitigate the risk of 
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Box 17.4: Wildfires, Pine Bark Beetles, and Forest Management, continued
bark beetle.58 The impacts of beetle-killed trees on fire likelihood vary over time, with an initial high probability of 
crown fires followed by the possibility of surface fires.60 

Wildfires have significant health and economic impacts. Fine particles and ozone precursors released during 
fires can lead to increased cardiovascular and respiratory damage (Ch. 13: Air Quality, KM 2).61 Increased wild-
fires are projected to increase costs associated with health effects, loss of homes and other property, wildfire 
response, and fuel management.62 However, risk analysis and planning around wildfire entail the challenge of 
accounting for all of the stressors acting on the system. Meanwhile, the stressors interact with one another 
and vary across temporal and sectoral scales (see Key Messages 2 and 4). Efforts are being made to improve 
prospective vulnerability assessments.57 The majority of research focuses only on first-order direct fire impacts 
and fails to recognize indirect and cascading consequences, such as erosion and the health impacts of smoke.63 
To conduct prospective analyses, most modeling efforts include climate and land-use and land-cover change as 
primary drivers but have a difficult time predicting human-induced stressors such as migration and settlement.57 

Wildfire at the Wildland–Urban Interface
Figure 17.4: Wildfires pose significant health and economic impacts through interfaces between wildlands and human 
settlements. Shown here is a wildfire in the Whiskeytown National Recreation Area in California in August 2004. Photo 
credit: Carol Jandrall, National Park Service. 
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Key Message 3 
Management of Interacting Systems

The joint management of interacting sys-
tems can enhance the resilience of com-
munities, industries, and ecosystems to 
climate-related stressors. For example, 
during drought events, river operations 
can be managed to balance water de-
mand for drinking water, navigation, and 
electricity production. Such integrated 
approaches can help avoid missed op-
portunities or unanticipated tradeoffs 
associated with the implementation of 
management responses to climate- 
related stressors.

In interacting systems, management responses 
within one system influence how other 
systems respond. Within water basins, for 
example, upstream management decisions 
can constrain downstream water-dependent 
management decisions that affect agriculture, 
transportation, domestic and commercial 
use, and environmental protection. Failure to 
anticipate such interdependencies can lead 
to missed opportunities for managing the 
risks of climate change; they can also lead to 
management responses that increase risks to 
other parts of the system. For example, the 
use of groundwater in California as an agri-
cultural backstop in the recent drought may 
alter California’s resilience to future droughts 
(see Box 17.3). 

In practice, managers of agricultural, natural 
resource, or infrastructure systems do manage 
at least some degree of system interdependen-
cies. For example, electrical utilities account 
for the management of water resources to 
provide power plant cooling capacity, manage 
fuel supply chains through transportation net-
works,64 and manage demand from customers. 
This requires utilities to acquire appropriate 

operational permits, licenses, and contracts 
relevant to other systems and to incorporate 
the characteristics of those systems in strate-
gic planning and risk management. At the same 
time, water utilities are users of electricity, 
particularly those that rely on desalination, 
which is very energy intensive. Hence, efforts 
to enhance the resilience of water supply 
systems to drought can have important conse-
quences for the energy sector and electricity 
costs.65 Such indirect risks can be challenging 
to manage, particularly when system managers 
have no operational control or jurisdiction over 
the interacting system. When drought reduced 
barge traffic on the Mississippi in 2013, farmers 
had limited options other than seeking more 
expensive transportation options or incurring 
delays in getting their products to market.66,67 

More holistic management approaches there-
fore hold the potential for anticipating these 
risks and developing effective strategies and 
practices for risk reduction.

Despite the challenge of managing system 
interactions, there are opportunities to learn 
from experience to guide future risk manage-
ment decisions (Ch. 28: Adaptation, KM 3). The 
financial sector has invested significantly in 
understanding and managing systemic risks—
including those associated with climate change 
and climate policy.68 Mechanisms include risk 
assessment, financial disclosures, contingency 
planning, and the development of regulations 
and industry standards that recognize system 
interdependencies. Another example is that 
of the Department of Defense (DoD), which 
integrates consideration for the implications 
of climate change and variability for food, 
water, energy, human migration, supply chains, 
conflict, and disasters into decision-making 
and operations around the world.69 In so doing, 
the DoD focuses on enhancing preparedness, 
building partnerships with other public and 
private organizations, and including climate 
change in existing planning processes.69,70 



17 | Sector Interactions, Multiple Stressors, and Complex Systems

652 Fourth National Climate AssessmentU.S. Global Change Research Program 

These strategies are relevant to any organi-
zation attempting to enhance its resilience to 
climate change. 

A multisector perspective recognizes that 
systems have multiple points of vulnerability, 
that risk can propagate between systems, and 
that anticipating threats and disruptions requires 
situational awareness within and between 
systems.71,72 Translating the growing awareness of 
such complexities into the design of policies and 
practices that effectively address climate change 
risks, however, requires rethinking how systems 
are managed in order to identify opportunities for 
risk reduction or greater efficiency. For example, 
risk can be reduced by building excess capacity, 
flexibility, and redundancy into systems.73 Reserve 
margins for electricity grids, multi-objective 

reservoir management, grain storage, multimodal 
transportation networks, and redundant com-
munications are all mechanisms that provide 
flexibility for coping with a broad range of risks. 
Resilience can also be enhanced by planning for 
system recovery in the event of diverse types of 
disruptions. For example, restoring power in the 
wake of a natural disaster is critical for restoring 
other services such as transportation, water, 
health, and communications (see Box 17.5). Nev-
ertheless, the costs of designing, constructing, 
operating, and monitoring resilient, interacting 
systems that are robust to multiple sources of 
stress can be significant. Hence, consideration of 
the costs and benefits of resilience over the entire 
life cycle of the system may be necessary to make 
the business case.

Box 17.5: Cascading Failures: Electricity, Public Health, and the 2003 Northeast Blackout
The interactions among severe weather, electric power infrastructure, and public health demonstrate how impacts can 
cascade within and across sectors (see Key Message 1) and how risk management depends on understanding these 
interactions (see Key Message 3). The 2016 Climate and Health Assessment identified the impacts of climate- 
related extreme events on critical infrastructure as a major threat to public health, but it also emphasized the influence 
of non-climatic factors such as inequalities in income and education as well as individual behavioral choices on health 
outcomes (Ch. 14: Human Health, KM 1).67

More frequent and severe heat waves in many parts of the United States would increase stresses on electric power, 
increasing the risk of cascading failures within the electric power network that could propagate into other sectors (Ch. 
4: Energy, KM 1).74 Hot weather increases demand for electricity, mostly for residential air conditioning, while reducing 
transmission efficiency and pushing power infrastructure closer to its operating tolerances (Ch. 4: Energy, KM 1).75 The 
Northeast blackout in August 2003, which affected the Northeast and the Canadian province of Ontario, is a familiar 
example of a cascading network failure that has been well documented (Figure 17.5) (see also Ch. 11: Urban, KM 3). In 
2003, a single electrical line warmed on a hot day and sagged into vegetation, tripping out of service. Redirected power 
overloaded other lines, causing them to trip as well. The disruption cascaded through the network until at the peak of 
the outage it affected an estimated 50 million people in the Northeast and Canada’s Ontario province.76 Depending on 
the location, the outage lasted several hours to up to two days, resulting in economic losses of $4–$10 billion due to 
disruption of businesses and industries.76

In the decade following the blackout, despite improvements in reliability and vegetation control standards,  
weather-related outages actually increased, accounting for 80% of major outages reported; about 20% of weather- 
related outages cause cascading failures.77 In addition, today’s grid is increasingly large, complex, and heavily loaded, 
which some researchers suggest increases the potential for blackouts.78,79 Conversely, others suggest that tighter 
integration with communications and information technology (IT) infrastructure will improve resilience.80
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Northeast Blackout
Figure 17.5: During the August 2003 blackout, an estimated 50 million people in Canada and the northeastern United States 
lost power, with cascading impacts on public health and critical infrastructure. These images show (clockwise from upper left): 
nighttime satellite imagery of the area before the outage; the same view during the blackout; people walking on the Manhattan 
Bridge; and passengers being evacuated from a subway train on the Manhattan Bridge during the outage. Image credits: (top) 
NOAA; (bottom left) Jack Szwergold (CC BY-NC 2.0); (bottom right) Eric Skiff (CC BY-SA 2.0).

Box 17.5: Cascading Failures: Electricity, Public Health, and the 2003 Northeast 
Blackout, continued
Given the challenges facing today’s grid, lessons from the 2003 blackout can still help the public health sector 
plan for and manage complex consequences of disruptions to interacting infrastructures.81 Power outages com-
promise other critical infrastructures, including telecommunications, IT infrastructure, transportation systems, 
and water and wastewater treatment. In 2003, these disruptions had a broad range of implications for public 
health, including reduced access to medical equipment and pharmacies, isolation in multistory buildings, slow 
emergency response times, hospital closures, and temporary loss of disease surveillance systems.82,83 These 
impacts translated into health consequences; one study estimated that the event caused 90 excess deaths 
during August.83 Maintaining a resilient healthcare infrastructure system therefore depends on being able to  
successfully adapt, respond, and recover when supporting infrastructure systems are disrupted (see Key  
Message 3).84 This reflects the importance of emergency response and disaster risk reduction planning at the 
community level as well as consideration of the health implications of urban design and  
infrastructure planning.67 

https://creativecommons.org/licenses/by-nc/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode
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Key Message 4 
Advancing Knowledge

Predicting the responses of complex, 
interdependent systems will depend on 
developing meaningful models of mul-
tiple, diverse systems, including human 
systems, and methods for character-
izing uncertainty. 

Although it is clear that climate-related and 
non-climate stressors impact multiple natural, 
built, and social systems simultaneously, there-
by altering societal risks, the tools available for 
predicting these dynamics lag those that pre-
dict the dynamics of individual systems. There 
are many existing modeling efforts that explore 
complex natural systems, including climate 
models and numerical weather forecasting 
models. Although these models are applied to 
scenarios driven by social and policy decisions, 
the models themselves rarely incorporate 
the feedback relationships to social systems 
and policy contexts.85,86,87,88 Engineering and 
resource management models that explicitly 
incorporate societal economic decisions 
and represent built systems at a very high 
resolution have not traditionally been linked to 
climate projections. Some integrated human–
earth system models are explicitly designed to 
identify system linkages but frequently lack key 
features or sufficient resolution of the inherent 
dynamics of the natural environment.89,90 These 
and other intersectoral models are also used 
to create scenarios of how combined natural–
human systems might evolve (for example, the 
Shared Socioeconomic Pathways [SSPs]) (see 
Scenario Products section of App. 3).53 Such 
scenarios can be useful for exploring the range 
of possible outcomes of larger trends, but the 
results should not be considered predictive. 
There is a large gap, therefore, in the multisec-
tor and multiscale tools and frameworks that 
are available to describe how different human 

systems interact with one another and with the 
earth system and how those interactions affect 
the total system response to the many stress-
ors they are subject to, including climate-relat-
ed stressors.91 However, increasing recognition 
of this gap has given rise to a number of inno-
vative research projects that seek to directly 
link climate scenarios or earth system models 
to high-resolution models of built infrastruc-
ture and human systems (e.g., Allen et al. 2016; 
Voisin et al. 2016; Ke et al. 2016; Zhou et al. 2017, 
2018; Tidwell et al. 201692,93,94,95,96,97).

The responses of interacting systems to both 
climate-related and non-climate stressors 
exhibit deep uncertainty, especially when 
interactions with societal decisions are includ-
ed. Deep uncertainty arises when there is a 
lack of clarity about the appropriate models 
to apply, the relative probability of various 
scenarios, and the desirability of alternative 
outcomes.98 Risk management decisions must 
therefore be made in the face of these uncer-
tainties (see Key Message 2). An important 
research challenge is therefore advancing sci-
entific methods and tools that can be applied 
in climate research, risk assessment, and risk 
management for complex, interdependent 
systems under deep uncertainty.99 
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Traceable Accounts
Process Description
The scope of this chapter was developed to fill a gap in previous National Climate Assessments 
(NCAs), notably the risks that emerge from interactions among sectors. Previous NCAs have 
touched on this subject, for example the energy, water, and land use chapter in the Third National 
Climate Assessment (NCA3). However, these assessments never included a chapter specifically 
focused on a general treatment of this topic. Emerging scientific research is highlighting the 
links between sectors and the potential complexity and implications of these interactions, from 
complex system dynamics such as cascading failures to management approaches and approaches 
to risk. These concepts were then incorporated into a detailed terms of reference for the chapter, 
outlining the scope and the general content to be included in the document.

The author team for this chapter was constructed to bring together the necessary diverse expe-
rience, expertise, and perspectives. Our authors brought expertise and experience in multiscale, 
multisector research and modeling, with a focus in specific sectors or sectoral combinations 
including critical infrastructure, energy–water–land interactions, and ecosystems. The authors 
also had expertise in complex systems science and previous experience in assessment processes.

The chapter was developed through technical discussions, a literature review, and expert delib-
eration by chapter authors through email and phone discussions. The team evaluated the state of 
the science on the analysis of sectoral interdependencies, compounding stressors, and complex 
system science. Case studies were drawn from a range of sources intended to represent the key 
themes in the chapter.

Key Message 1 
Interactions Among Sectors

The sectors and systems exposed to climate (for example, energy, water, and agriculture) 
interact with and depend on one another and other systems less directly exposed to climate 
(such as the financial sector). In addition, these interacting systems are not only exposed to 
climate-related stressors such as floods, droughts, and heat waves, they are also subject to a 
range of non-climate factors, from population movements to economic fluctuations to urban 
expansion. These interactions can lead to complex behaviors and outcomes that are difficult to 
predict. It is not possible to fully understand the implications of climate change on the United 
States without considering the interactions among sectors and their consequences. (High 
Confidence)

Description of evidence base
A suite of examples across this assessment and within this chapter demonstrate the interactions 
between systems and the potentially important implications of these linkages. Examples in this 
chapter include Hurricane Harvey; the 2003 Northeast blackout; energy–water–land systems in 
California and throughout the nation; forest systems facing influences from wildfires, drought, 
and pine bark beetles; and the implications of the reintroduction of wolves in Yellowstone. Each 
of these examples is supported by its own evidence base; the linkages between systems and the 
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importance of non-climate influences is self-evident from these examples. Beyond these exam-
ples, a small set of recent literature has begun to explore ways to more systematically quantify 
the implications of including sectoral interdependencies in climate risk assessment (e.g., Harri-
son et al. 20168).

In addition to literature specific to risk assessment in the context of climate change, there is a 
long history of research on complex systems11 that raises the potential for a range of dynamics 
that might emerge from sectoral interdependencies and compounding stressors. This includes 
research spanning disciplines from meteorology12 to ecology13 to paleontology14 to computer 
science.15 This literature supports the conclusion that more complex dynamics may occur when 
multiple systems interact with one another.

Major uncertainties
The interactions between sectors and systems relevant to climate risk assessment are self- 
evident, and there are clear examples of unanticipated dynamics emerging from these interactions 
in the past. Yet our understanding is limited regarding the precise nature of complex system 
behavior in the context of climate risk assessment and its ultimate influence on the outcomes of 
such assessments. As noted in Key Message 4, the available tools and frameworks are simply not 
sufficient at this point to identify key risks emerging from intersectoral interdependencies and 
compounding stressors.

Description of confidence and likelihood
We have high confidence in this message, because there is high agreement and extensive evidence 
that a range of critical intersectoral interdependencies and compounding stressors are present 
and relevant to climate risk assessment. At the same time, the precise impact of these on system 
dynamics is not well understood. 

Key Message 2 
Multisector Risk Assessment

Climate change risk assessment benefits from a multisector perspective, encompassing 
interactions among sectors and both climate and non-climate stressors. Because such 
interactions and their consequences can be challenging to identify in advance, effectively 
assessing multisector risks requires tools and approaches that integrate diverse evidence and 
that consider a wide range of possible outcomes. (High Confidence)

Description of evidence base
Recent climate change assessments (e.g., Oppenheimer et al. 2014, Houser et al. 201545,46) empha-
size that a multisector perspective expands the scope of relevant risks and uncertainties associ-
ated with climate change impacts. Assessing these risks requires attention to multiple interacting 
sectors, geographic regions, and stressors, such as 1) interactions in the management of water, 
land, and energy (see Box 17.3), or 2) spatial compounding of impacts if, for example, multiple 
infrastructure systems fail within a city (see Box 17.1). Risk assessment also requires attention to 
indirect and long-distance climate change impacts, for instance resulting from human migration 
or conflict.45,100 Analyses of historical events (see Box 17.5), evaluations of statistical risk (e.g., 
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Carleton and Hsiang 2016101), and process-based modeling projections are some of the methods 
demonstrating these complex interactions across sectors, scales, and stressors. 

Different tools and approaches are required to assess multisector risks. Approaches can be applied 
to integrate diverse evidence, combining quantitative and qualitative results and drawing from 
the natural and social sciences and other forms of analysis.47,49,51 For instance, models and expert 
judgment have been used together to inform our understanding of future sea level rise,52 and 
scenarios can also be used to explore preparedness across possible futures.53,54,55

Major uncertainties
For interdependent systems affected by multiple stressors, the number and complexity of possible 
interactions are greater, presenting deeper uncertainties. It is often difficult or impossible to 
represent all relevant processes and interactions in analyses of risks, especially quantitatively. For 
example, quantitative projections can evaluate probabilities of well-understood sectoral interac-
tions but will be limited by processes or parameters that are poorly known or unknowable. This 
is why the integration of diverse evidence and attention to deeper uncertainties are important in 
multisector risk assessment.

Description of confidence and likelihood
We have high confidence in this Key Message because there is high agreement that a multisector 
perspective alters risk assessment, as is reflected in recent climate change assessments. However, 
the evidence basis for multisector evaluations is emerging.

Key Message 3 
Management of Interacting Systems

The joint management of interacting systems can enhance the resilience of communities, 
industries, and ecosystems to climate-related stressors. For example, during drought events, 
river operations can be managed to balance water demand for drinking water, navigation, and 
electricity production. Such integrated approaches can help avoid missed opportunities or 
unanticipated tradeoffs associated with the implementation of management responses to 
climate-related stressors. (High Confidence)

Description of evidence base
Recent literature has documented that the management of interacting infrastructure systems is 
a key factor influencing their resilience to climate and other stressors. A range of studies have 
argued that the complexity of institutional arrangements in mature, democratic economies like 
the United States poses challenges to the pursuit of climate adaptation objectives and sustainabil-
ity more broadly.72,102,103,104,105 The complexity associated with interacting systems of systems poses 
significant challenges to integrated management.105 The allocation of authority and responsibility 
for system management across multiple levels of government as well as between public and 
private sectors often contributes to decision-making by one actor being enabled or constrained by 
other actors.72,103
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The interdependencies among systems reflect the potential value in the development of more 
integrated management strategies.72 This concept of integrated management is reflected in 
existing literatures, particularly those associated with integrated water resources management 
106,107,108,109 and integrated infrastructure planning.110,111,112 Such studies often address integration 
within sectors or systems, with less consideration for integration between or among systems. This 
has the potential to lead to missed opportunities for improving management practice.72 However, 
assessments of energy,113 urban infrastructure,75 and coupled energy–water–land114 systems 
conducted as part of NCA344 identified a range of interdependencies across multiple sectors (see 
Dawson 2015115). 

A range of strategies have been proposed for enhancing the capacity to manage system interde-
pendencies and climate change risk. Significant effort has been invested in understanding and 
modeling system dynamics to enhance capabilities for risk and vulnerability assessment. These 
efforts have largely focused on physical infrastructure systems, infrastructure networks, and the 
potential for cascading failures.116,117,118,119 Such capabilities help to identify what can be monitored 
in complex systems to enhance situational awareness, anticipate disruptions, and increase 
resilience.71,120,121 

There is ample evidence of comanagement of interdependent systems, often as a function of 
resource assurance and/or contingency planning. For example, the use of water for electricity 
generation (hydropower or cooling in thermal generation) involves regulatory constraints around 
water use as well as operational decision-making regarding water management.72,114,122,123,124,125 These 
interactions have been a major focus of studies addressing the climate–water–energy nexus. 
Meanwhile, emergency managers as well as agricultural, commercial, and industrial supply chains 
often develop contingency plans in the event of disruptions of transportation, telecommunica-
tions, water, and/or electricity.81,126,127,128,129 

A key element of such planning is to build redundancy and flexibility into system operations.73 
Evidence suggests that adding flexibility or robustness to systems or transforming systems such 
that they interact or behave in fundamentally different ways can increase construction, mainte-
nance, or procurement costs.82,130,131 However, a number of studies exploring the valuation of resil-
ience actions and investments have concluded that the benefits of resilience interventions can be 
significantly greater than the costs, provided the long-term mitigating effects of the intervention 
are factored in.132,133,134  

Given the complexity of governance systems, the responsibility for the design and implementation 
of such strategies for integrated management rests on a broad range of actors. Over the latter part 
of the 20th century, the privatization of infrastructure, including energy, telecommunications, 
and water, transferred infrastructure management, responsibility, and risk to the private sector.135 
Nevertheless, local, state, and federal governments continue to have critical roles in regulation, 
risk assessment, and research and development. In addition, many institutions, organizations, 
and individuals either have infrastructure dependencies or influence the dynamics, operations, 
investment, and performance of infrastructure.136 The increasing interconnectedness of both 
infrastructure and the people who use and manage that infrastructure is leading to both new 
challenges and opportunities for comanaging these systems, particularly in urban areas.137,138,139 
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A growing literature is identifying opportunities to enhance consideration of human health and 
other benefits in the design of urban landscapes and infrastructure.67,140,141,142,143 

Major uncertainties
The dominant uncertainties associated with the management of climate risks and system interde-
pendencies include understanding indirect effects and feedbacks between systems, particularly 
with respect to predicting system responses. Technological change could have significant implica-
tions for the resilience, interconnectedness, and responses of systems to climate-related stressors 
and other disturbances. Such change could increase the complexity of integrated management 
with implications that could be positive or negative with respect to vulnerability. In addition, the 
future evolution of governance and regulatory dimensions of infrastructures systems, as well as 
consumer choices and behavior, are associated with irreducible uncertainty, largely because they 
involve choices yet to be made. 

Description of confidence and likelihood
There is high agreement and extensive evidence that institutional arrangements and governance 
are critical to the management of systems and their interdependencies. This finding is reflected in 
scientific assessments, modeling studies, and observations of system responses and performance, 
as well as in theories emerging from complex systems science. Furthermore, a history of man-
agement practice associated with water, energy, transportation, telecommunications, food, and 
health systems that spans decades to centuries provides evidence for the importance of system 
interdependencies. Thus, there is high confidence in this message. 

Key Message 4 
Advancing Knowledge

Predicting the responses of complex, interdependent systems will depend on developing 
meaningful models of multiple, diverse systems, including human systems, and methods for 
characterizing uncertainty. (High Confidence)

Description of evidence base
This Key Message is based on an understanding of a range of analyses and modeling tools 
described throughout the chapter.

Major uncertainties
Because the Key Message is the authors’ assessment of the overall state of development of 
research tools and models, and the subsequent importance of developing research tools, the con-
cept of major uncertainties is not entirely appropriate. This is a matter of the authors’ judgment, 
not calculation or assessment of underlying probabilities.

Description of confidence and likelihood
See above. No likelihood statement is appropriate, and the high confidence is based on the authors’ 
assessment of the underlying literature and development of methods and modeling tools.
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