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Key Message 1 

Land-Cover Changes Influence Weather and Climate
Changes in land cover continue to impact local- to global-scale weather and climate 
by altering the flow of energy, water, and greenhouse gases between the land and the 
atmosphere. Reforestation can foster localized cooling, while in urban areas, continued 
warming is expected to exacerbate urban heat island effects.

Key Message 2

Climate Impacts on Land and Ecosystems 
Climate change affects land use and ecosystems. Climate change is expected to directly 
and indirectly impact land use and cover by altering disturbance patterns, species 
distributions, and the suitability of land for specific uses. The composition of the natural 
and human landscapes, and how society uses the land, affects the ability of the Nation’s 
ecosystems to provide essential goods and services.

Land Cover and Land-Use Change5

Agricultural fields near the Ririe Reservoir, Bonneville, Idaho
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Land use is also changed by both human and 
climate drivers. Land-use decisions are tradi-
tionally based on short-term economic factors. 
Land-use changes are increasingly being influ-
enced by distant forces due to the globalization 
of many markets. Land use can also change due 
to local, state, and national policies, such as 
programs designed to remove cultivation from 
highly erodible land to mitigate degradation,1 
legislation to address sea level rise in local 
comprehensive plans, or policies that reduce 
the rate of timber harvest on federal lands. 
Technological innovation has also influenced 
land-use change, with the expansion of culti-
vated lands from the development of irrigation 
technologies and, more recently, decreases in 
demand for agricultural land due to increases 
in crop productivity. The recent expansion of 
oil and gas extraction activities throughout 
large areas of the United States demonstrates 
how policy, economics, and technology can 
collectively influence and change land use 
and land cover.

Decisions about land use, cover, and manage-
ment can help determine society’s ability to 
mitigate and adapt to climate change.

Executive Summary

Climate can affect and be affected by changes 
in land cover (the physical features that cover 
the land such as trees or pavement) and land 
use (human management and activities on 
land, such as mining or recreation). A forest, for 
instance, would likely include tree cover but 
could also include areas of recent tree remov-
als currently covered by open grass areas. Land 
cover and use are inherently coupled: changes 
in land-use practices can change land cover, 
and land cover enables specific land uses. 
Understanding how land cover, use, condition, 
and management vary in space and time 
is challenging.

Changes in land cover can occur in response to 
both human and climate drivers. For example, 
demand for new settlements often results in 
the permanent loss of natural and working 
lands, which can result in localized changes 
in weather patterns, temperature, and pre-
cipitation. Aggregated over large areas, these 
changes have the potential to influence Earth’s 
climate by altering regional and global circula-
tion patterns, changing the albedo (reflectivity) 
of Earth’s surface, and changing the amount of 
carbon dioxide (CO2) in the atmosphere. Con-
versely, climate change can also influence land 
cover, resulting in a loss of forest cover from 
climate-related increases in disturbances, the 
expansion of woody vegetation into grasslands, 
and the loss of beaches due to coastal erosion 
amplified by rises in sea level. 
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Changes in Land Cover by Region

The figure shows the net change in land cover by class in square miles, from 1973 to 2011. Land-cover change has been highly 
dynamic over space, time, and sector, in response to a range of driving forces. Net change in land cover reveals the trajectory 
of a class over time. A dramatic example illustrated here is the large decline in agricultural lands in the two Great Plains regions 
beginning in the mid-1980s, which resulted in large part from the establishment of the Conservation Reserve Program. Over the 
same period, agriculture also declined in the Southwest region; however, the net decline was largely attributable to prolonged 
drought conditions, as opposed to changes in federal policy. Data for the period 1973–2000 are from Sleeter et al. (2013)2 while 
data from 2001–2011 are from the National Land Cover Database (NLCD).3 Note: the two disturbance categories used for the 
1973–2000 data were not included in the NLCD data for 2001–2011 and largely represent conversions associated with harvest 
activities (mechanical disturbance) and wildfire (nonmechanical disturbance). Comparable data are unavailable for the U.S. 
Caribbean, Alaska, and Hawai‘i & U.S.-Affiliated Pacific Islands regions, precluding their representation in this figure. From 
Figure 5.2 (Source: USGS). 
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Introduction

Climate can affect and be affected by changes 
in land cover (the physical features that cover 
the land, such as trees or pavement) and land 
use (human management and activities on 
land, such as mining or recreation). A forest, 
for instance, would likely include tree cover 
but could also include areas of recent tree 
removals currently covered by open grass 
areas. Land cover and use are inherently cou-
pled: changes in land-use practices can change 
land cover, and land cover enables specific 
land uses. Understanding how land cover, use, 
condition, and management vary in space and 
time is challenging, because while land cover 
and condition can be estimated using remote 
sensing techniques, land use and management 
typically require more local information, such 
as field inventories. Identifying, quantifying, 
and comparing estimates of land use and land 
cover are further complicated by factors such 
as consistency and the correct application of 
terminology and definitions, time, scale, data 
sources, and methods. While each approach 
may produce land-use or land-cover classi-
fications, each method may provide different 
types of information at various scales, so 
choosing appropriate data sources and clearly 
defining what is being measured and reported 
are essential. 

Changes in land cover can occur in response to 
both human and climate drivers. For example, 
the demand for new settlements often results 
in the permanent loss of natural and working 
lands, which can result in localized changes 
in weather patterns,4,5 temperature,6,7 and 
precipitation.8 Aggregated over large areas, 
these changes have the potential to influence 
Earth’s climate by altering regional and global 
circulation patterns,9,10,11 changing the albedo 
(reflectivity) of Earth’s surface,12,13 and changing 
the amount of carbon dioxide (CO2) in the 
atmosphere.14,15 Conversely, climate change can 

also influence land cover, resulting in a loss of 
forest cover from climate-related increases 
in disturbances,16,17,18 the expansion of woody 
vegetation into grasslands,19 and the loss of 
coastal wetlands and beaches due to increased 
inundation and coastal erosion amplified by 
rises in sea level.20 

Changes in land use can also occur in response 
to both human and climate drivers. Land-use 
decisions are often based on economic fac-
tors.21,22,23 Land-use changes are increasingly 
being influenced by distant forces due to the 
globalization of many markets.21,24,25,26 Land 
use can also change due to local, state, and 
national policies, such as programs designed to 
remove cultivation from highly erodible land to 
mitigate degradation,1 legislation to address sea 
level rise in local comprehensive plans,27 and 
policies that reduce the rate of timber harvest 
on federal lands28,29 or promote the expansion 
of cultivated lands for energy production.30 
Technological innovation has also influenced 
land-use change, with the expansion of culti-
vated lands from the development of irrigation 
technologies31,32 and, more recently, decreases 
in demand for agricultural land due to increas-
es in crop productivity.33 The recent expansion 
of oil and gas extraction activities throughout 
large areas of the United States demonstrates 
how policy, economics, and technology can 
collectively influence and change land use 
and land cover.34

Land use also responds to changes in climate 
and weather. For example, arable land (land 
that is suitable for growing crops) may be 
fallowed (left uncultivated) or abandoned com-
pletely during periods of episodic drought35,36 
or converted to open water during periods 
of above-normal precipitation.37 Increased 
temperatures have also been shown to have a 
negative effect on agricultural yields (Ch. 10: Ag 
& Rural, KM 1).38 Climate change can also have 
positive impacts on land use, such as increases 
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in the length of growing seasons, particularly 
in northern latitudes.39,40,41 Forest land use is 
also susceptible to changes in weather and 
climate (Ch. 6: Forests). For example, the 
recent historical drought in California has 
resulted in a significant forest die-off event,42,43 
which has implications for commercial timber 
production. Similarly, insect outbreaks across 
large expanses of western North American 
forests have been linked to changes in weather 
and climate,17 which in turn may result in 
important feedbacks on the climate system.44 
Sea level rise associated with climate change 
will likely require changes in coastal land use, 
as development and infrastructure are increas-
ingly impacted by coastal flooding.27,45,46,47 As 
sea levels rise, many coastal areas will likely 
experience increased frequency and duration 
of flooding events, and impacts may be felt in 
areas that have not experienced coastal flood-
ing in the past (Ch. 8: Coastal, KM 1).

Decisions about land use, cover, and manage-
ment can help determine society’s ability to 
mitigate and adapt to climate change. Reducing 
atmospheric greenhouse gas (GHG) concentra-
tions can, in part, be achieved by increasing the 
land-based carbon storage.48 Increasing this 
carbon storage can be achieved by increasing 
the area of forests, stabilizing or increasing 
carbon stored in soils49,50 and forests (Ch. 6: 
Forests),51 avoiding the release of stored carbon 
due to disturbances (such as wildfire) through 
forest management practices (Ch. 6: Forests, 
KM 3),52,53 and increasing the carbon stored 
in wood products.54 However, there are large 
uncertainties about what choices will be made 
in the future and the net effects of the result-
ing changes in land use and land cover.55,56,57

State of the Sector

Humans have had a far-reaching impact on 
land cover within the contiguous United 
States. Of the approximately 3.1 million square 
miles of land area, approximately 28% has 
been significantly altered by humans for use 
as cultivated cropland and pastures (22%) 
or settlements (6%; Figure 5.1a).3 Land uses 
associated with resource production (such 
as grazing, cropland, timber production, and 
mining) account for more than half of the land 
area of the contiguous United States,58 followed 
by land that is conserved (16%), built-up areas 
(13%), and recreational land (10%; Figure 5.1b). 
Between 2001 and 2011, developed land cover 
increased by 5% and agriculture declined by 
1%. Urbanization was greater between 2001 
and 2006 than between 2006 and 2011, which 
may be attributable to the 2007–2009 econom-
ic recession.59,60 The relative stability in agri-
cultural land use between 2001 and 2011 masks 
widespread fluctuations brought about by the 
abandonment and expansion of agricultural 
lands (see Figure 5.2 for more detail).

Vegetated land cover, including grasslands, 
shrublands, forests, and wetlands, accounted 
for approximately two-thirds of the contiguous 
U.S. land area and experienced a net decline 
of approximately 5,150 square miles between 
2001 and 2011. However, many of these areas 
are also used for the production of ecosystem 
goods and services, such as timber and grazing, 
which lead to changes in land cover but may 
not necessarily result in a land-use change. 
Between 2001 and 2011, forest land cover had 
the largest net decline of any class (25,730 
square miles)3 but forest land use increased by 
an estimated 3,200 square miles over a similar 
period (Ch. 6: Forests).61 The increase in forest 
land use is due, in large part, to the conversion 
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Land-Use and Land-Cover Composition

Figure 5.1: The composition of land use and land cover (LULC) is highly variable across the United States, owing in part to 
the natural environmental settings of each region. Forests dominate much of the vegetated areas of the eastern United States, 
while much of the Great Plains and Southwest are dominated by grasses and shrubs. Characterizing the composition of LULC 
also depends on the type of classification system used. This figure shows two different classification systems used to represent 
different components of land use and land cover: (a) the National Land Cover Database (NLCD),3 which is derived from the 
classification of satellite images and represents the physical features on the ground, such as land that is covered by trees 
(forest cover) or impervious surfaces (developed cover); and (b) the National Land Use Dataset (NLUD),58 which divides the 
land into 79 land-use categories that can be aggregated into five major use categories, including lands used for conservation, 
production of goods and services, and recreation. Data are unavailable for both the U.S. Caribbean region and the U.S.-
Affiliated Pacific Islands in the NLCD and the NLUD. Source: USGS. This figure was revised in June 2019. See Errata for details:  
https://nca2018.globalchange.gov/downloads

https://nca2018.globalchange.gov/downloads
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of abandoned croplands to forestland62 and 
the reversion to and expansion of trees in 
grassland ecosystems in the Great Plains and 
western United States.61 There have also been 
losses in forest land use over the past 25 years, 
predominantly to grasslands and settlements, 
with grasslands and shrublands increasing in 
area by nearly 20,460 square miles. Collectively, 
non-vegetated areas, including water, barren 
areas, and snow and ice, account for approxi-
mately 6% of the total land area. 

Coastal regions, as mapped within the National 
Oceanic and Atmospheric Administration’s 
(NOAA) Coastal Change Analysis Program 
(C-CAP), account for 23% of the contiguous 
U.S. land area and have been particularly 
dynamic in terms of change, accounting for 
approximately 50% of all land-cover change 
and 43% of all urbanization in the contiguous 
United States. Approximately 8% of the coastal 

region changed between 1996 and 2010, which 
included about 16,500 square miles of forest 
loss and about 5,700 square miles of gain in 
urban land, a rate three times higher than 
that of the interior of the United States. Addi-
tionally, nearly 1,550 square miles of wetlands 
were lost in coastal regions, a trend counter 
to that of the Nation as a whole. A majority of 
this wetland loss has occurred in the northern 
Gulf of Mexico (Ch. 8: Coastal; Ch. 19: South-
east).63 Coastal shoreline counties comprise 
approximately 10% of the United States in 
terms of land cover (excluding Alaska and the 
U.S. Caribbean) yet represent 39% of the U.S. 
population (2010 estimates), with population 
densities six times higher than in non-coastal 
areas.64 Between 1970 and 2010, the population 
in coastal areas increased by nearly 40% 
and is projected to increase by an additional 
10 million people over 2010–2020 (Figure 
5.3).64 Increases in the frequency of high tide 

Estimates of Land-Use Area (Square Miles) by NCA Region

NCA Region Croplands Forestlands Grasslands Other Lands Settlements Wetlands
Alaska 111 133,438 305,659 76,388 558 64,336 

Hawai‘i 173 2,501 1,997 1,283 438 51 

Midwest 212,994 142,314 43,753 4,140 36,638 18,867 

Northern Great 
Plains 136,089 62,829 248,678 4,473 8,216 9,765 

Northeast 24,490 131,383 11,649 2,929 24,856 12,521 

Northwest 28,076 114,263 89,963 3,853 7,784 5,573 

Southern Great 
Plains 103,698 103,325 182,216 2,547 19,878 7,790 

Southeast 84,137 301,616 58,442 3,610 45,799 34,852 

Southwest 39,782 174,669 416,464 30,324 22,311 10,237 

Total 629,550 1,166,338 1,358,821 129,547 166,478 163,992 

Table 5.1: Definitions of land use and land cover vary among agencies and entities collecting those data. This may lead to 
fundamental differences in these estimates that must be considered when comparing estimates of cover and use. For the pur-
poses of this report, land cover is defined as the physical characteristics of land, such as trees or pavement, and land use is 
characterized by human management and activities on land, such as mining or recreation. The land-use area estimates in this 
table and throughout this chapter were obtained from the U.S. Forest Service’s Forest Inventory and Analysis (FIA) Program and 
the National Resources Conservation Service’s (NRCS) Natural Resources Inventory (NRI) data, when available for an area, 
because the surveys contain additional information on management, site conditions, crop types, biometric measurements, and 
other data that are needed to estimate carbon stock changes and nitrous oxide and methane emissions on those lands. If NRI 
and FIA data are not available for an area, however, then the NLCD product is used to represent the land use. Since all three 
data sources were used in the land representation analysis within the National Inventory Report, we used land-use estimates 
from the U.S. Environmental Protection Agency’s annual greenhouse gas inventory report.61 Data are unavailable for both the 
U.S. Caribbean region and the U.S.-Affiliated Pacific Islands in the NRI and FIA datasets.
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flooding and extreme weather events (such as 
hurricanes and nor’easters), wetland loss, and 
beach loss from sea level rise present potential 
threats to people and property in the coastal 
zone (Ch. 8: Coastal, KM 1; Ch. 18: Northeast; 
Ch. 19: Southeast, KM 2).

Disturbance events (such as wildfire and 
timber harvest) are important factors that 
influence land cover. For example, forest dis-
turbances can initiate a succession from forest 
to herbaceous grasslands to shrublands before 

forest reestablishment, with each successional 
stage having a different set of feedbacks with 
the climate. The length of an entire succes-
sional stage varies based on local environmen-
tal characteristics.65 Permanent transitions 
to new cover types after a disturbance are 
also possible for many reasons, including 
the establishment of invasive or introduced 
species that are able to quickly establish and 
outcompete native vegetation.66,67 Data from 
the North American Forest Dynamics dataset 
indicate that forest disturbances affected an 

Changes in Land Cover by Region

Figure 5.2: The figure shows the net change in land cover by class in square miles, from 1973 to 2011. Land-cover change has 
been highly dynamic over space, time, and sector, in response to a range of driving forces. Net change in land cover reveals the 
trajectory of a class over time. A dramatic example illustrated here is the large decline in agricultural lands in the two Great Plains 
regions beginning in the mid-1980s, which resulted in large part from the establishment of the Conservation Reserve Program. 
Over the same period, agriculture also declined in the Southwest region; however, the net decline was largely attributable to 
prolonged drought conditions, as opposed to changes in federal policy. Data for the period 1973–2000 are from Sleeter et al. 
(2013),2 while data from 2001–2011 are from the National Land Cover Database (NLCD).3 Note: the two disturbance categories 
used for the 1973–2000 data were not included in the NLCD data for 2001–2011 and largely represent conversions associated 
with harvest activities (mechanical disturbance) and wildfire (nonmechanical disturbance). Comparable data are unavailable for 
the U.S. Caribbean, Alaska, and Hawai‘i & U.S.-Affiliated Pacific Islands regions, precluding their representation in this figure. 
Source: USGS.
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average of approximately 11,200 square miles 
per year in the contiguous United States from 
1985 to 2010 (an area greater than the entire 
state of Massachusetts). Between 2006 and 
2010, the rate of forest disturbance declined by 
about one-third.68 Although these data include 
a wide range of disturbance agents, including 
fire, insects, storms, and harvest, the sharp 
decline likely corresponds to a reduction in 
timber harvest activities resulting from a drop 
in demand for construction materials following 
the 2007–2009 economic recession. 

Wildland fires provide a good example of how 
ecosystem disturbance, climate change, and 
land management can interact. Between 1979 
and 2013, the number of days with weather 

conditions conducive to fire has increased 
globally, including in the United States.69 At the 
same time, human activities have expanded 
into areas of uninhabited forests, shrublands, 
and grasslands,70 exposing these human 
activities to greater risk of property and life 
loss at this wildland–urban interface.71,72 Over 
the last two decades, the amount of forest 
area burned and the expansion of human 
activity into forests and other wildland areas 
have increased.73 These changes in climate 
and patterns of human activity have led in 
part to the development of a national strategy 
for wildland fire management for the United 
States. The strategy, published in 2014, was one 
outcome of the Federal Land Assistance, Man-
agement, and Enhancement (FLAME) Act of 

Development in the Houston Area

Figure 5.3: The figure shows the development-related changes surrounding Houston, Texas, from 1996 to 2010, as mapped by 
NOAA’s Coastal Change and Analysis Program (C-CAP). Areas of change between 1996 and 2010 are shown in black.63 These 
changes can have numerous impacts on the environment and populations, ranging from increased urban heat island effects and 
storm water runoff (the latter of which can increase flooding and produce water quality impacts), to decreases in natural cover. 
Source: USGS.
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2009. An important component of the national 
strategy74 is a classification of U.S. counties 
based on their geographic context; fire history; 
amount of urban, forest, and range land; and 
other factors. The land-use, land-cover, and 
other components of the classification model 
are used to guide management actions.

Future Changes
Representative Concentration Pathways 
(RCPs) were developed to improve society’s 
understanding of plausible climate and 
socioeconomic futures.75 U.S. projections of 
land-use and land-cover change (LULCC) 
developed for the RCPs span a wide range of 
future climate conditions, including a higher 
scenario (RCP8.5)76 and three mitigation sce-
narios (RCP2.6, RCP4.5, and RCP6.0) (for more 
on RCPs, see Front Matter and the Scenario 
Products section in App. 3).77,78,79 Projected 
changes in land use within each scenario were 
harmonized with historical data80 and include 
a broad range of assumptions, from aggressive 
afforestation (the establishment of a forest 
where there was no previous tree cover) in 
the Midwest and Southeast (RCP4.5) to large-
scale expansion of agricultural lands to meet 
biofuel production levels (RCP2.6; see Hibbard 
et al. 2017 81).

The Shared Socioeconomic Pathways (SSPs) 
have been developed to explore how future 
scenarios of climate change interact with 
alternative scenarios of socioeconomic devel-
opment (in terms of population, economic 
growth, and education) to understand climate 
change impacts, adaptation and mitigation, and 
vulnerability.82,83 In a scenario with medium 
barriers to climate mitigation and adaptation 
(SSP2) and a scenario with high barriers to 
climate mitigation (SSP5), the amount of land 
devoted to developed use (for example, urban 
and suburban areas) is projected to increase 
by 50% and 80%, respectively, from 2010 levels 
by the year 2100. These changes represent a 

potential loss of between 500,000 and 620,000 
square miles of agricultural or other vegetated 
lands (for more on SSPs, see the Scenario 
Products section of App. 3).84

Future changes in land use are likely to have 
far-reaching impacts on other sectors. For 
example, by mid-century, water use in Cali-
fornia is projected to increase by 1.5 million 
acre-feet, driven almost entirely by a near 60% 
increase in developed water-use demand.85 
Research in Hawai‘i projects a steady reduction 
in the strength of the state’s annual ecosystem 
carbon sink, resulting primarily from a combi-
nation of urbanization and a shift toward drier, 
less productive ecosystems by mid-century.86 

Key Message 1 
Land-Cover Changes Influence 
Weather and Climate

Changes in land cover continue to im-
pact local- to global-scale weather and 
climate by altering the flow of energy, 
water, and greenhouse gases between 
the land and the atmosphere. Refor-
estation can foster localized cooling, 
while in urban areas, continued warming 
is expected to exacerbate urban heat 
island effects.

The influence of land-use and land-cover 
change (LULCC) on climate and weather is 
complex, and specific effects depend on the 
type of change, the scale of the assessment 
(local, regional, or global), the size of the area 
under consideration, the aspect of climate and 
weather being evaluated (such as temperature, 
precipitation, or seasonal trends), and the 
region where the change occurs.87,88

Recent studies suggest that forests tend to be 
cooler than herbaceous croplands throughout 
much of the temperate region.89,90,91,92,93,94,95,96 
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These studies suggest that reforestation in the 
temperate forest region would promote cool-
ing, with the magnitude of cooling decreasing 
with increasing latitude.90,94,95,96,97 The scale of 
the cooling from reforestation would depend 
on its extent and location. Biogeophysical 
(albedo, surface roughness, and transpiration) 
changes arising from land-cover change tend 
to result in more localized changes, whereas 
biogeochemical changes (such as carbon 
sequestration) tend to have a more global 
reach. Reforestation in the temperate forest 
region is an effective climate mitigation and 
adaptation strategy.90,94

Fires in forests, grasslands, shrublands, and 
agricultural lands affect climate in two ways: 
1) transporting carbon from the land to the 
atmosphere in the form of carbon dioxide and 
other greenhouse gases, and 2) increasing 
the concentration of small particles (aerosols) 
in the atmosphere that tend to reduce the 
amount of solar energy reaching the surface of 
Earth by increasing (although often temporari-
ly) the reflectivity of the atmosphere.98 Climate 
is also a principal determinant of an area’s fire 
regime,99 which refers to the pattern in which 
fires occur within ecosystems based on factors 
such as size, severity, and frequency. Studies 
suggest that most aspects of the fire regime 
are increasing in the United States (Ch. 6: 
Forests, KM 1; Ch. 26: Alaska).18,99,100,101 However, 
the true extent of an altered fire regime’s 
influence on climate is unclear, because the 
warming attributable to carbon releases to 
the atmosphere and decreases in surface 
albedo (at least temporarily) may be offset by 
increased reflectivity of the atmosphere from 
the increased concentration of small particles 
and the enhanced storage of carbon due to 
forest regrowth.99 

Urban regions include several characteristics 
that can influence climate,102 including con-
struction materials that absorb more heat than 

vegetation and soils do, impervious cover that 
minimizes the cooling effect of evapotranspira-
tion, the canyon-like architecture of buildings 
that tends to trap heat, and heat generation 
from vehicle and building emissions.103,104 These 
factors make urban areas warmer than their 
surroundings, a phenomenon referred to as the 
urban heat island (UHI) effect. Urbanization 
has a small effect on global temperatures, with 
more dramatic effects evident regionally where 
urbanization is extensive.105,106,107 The local-scale 
UHI impact is relative to the regional climate 
such that its effect tends to be more severe 
in the eastern United States and declines 
westward.10,108,109,110,111 Although the evidence is 
not conclusive, urbanization may also increase 
downwind precipitation.112,113,114 Further, climate 
change may act synergistically with future 
urbanization (that is, an increase in impervious 
cover), resulting in increased likelihoods and 
magnitudes of flood events (e.g., Hamdi et al. 
2011, Huong and Pathirana 2013 115,116).

Water transport and application to cropland 
also impact climate. Between 2002 and 2007, 
irrigated lands expanded by approximately 1.3 
million acres in the United States, with much 
of the change occurring in the Great Plains 
regions.117 Approximately 88.5 million acre-feet 
of water were applied to approximately 55 
million acres of irrigated agriculture in the 
United States in 2012.118 Globally, the amount of 
water transported to the atmosphere through 
irrigated agriculture is roughly equivalent to 
the amount of water not transported to the 
atmosphere from deforestation.119 Studies have 
shown reductions in surface air tempera-
tures in the vicinity of irrigation due to both 
evaporation effects120,121,122 and increases in 
downwind precipitation as a result of increased 
atmospheric moisture.123 These potentially 
local-to-regional cooling effects are also coun-
terbalanced by constraints on the availability of 
water for irrigation.124
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Key Message 2 
Climate Impacts on Land and 
Ecosystems

Climate change affects land use and 
ecosystems. Climate change is expected 
to directly and indirectly impact land 
use and cover by altering disturbance 
patterns, species distributions, and the 
suitability of land for specific uses. 
The composition of the natural and 
human landscapes, and how society 
uses the land, affects the ability of the 
Nation’s ecosystems to provide essential 
goods and services.

Climate can drive changes in land cover and 
land use in several ways, including changes 
in the suitability of agriculture (Ch. 10: Ag & 
Rural),125,126 increases in fire frequency and 
extent (Ch. 6: Forests),18,101 the loss or migration 
of coastal wetlands,127 and the spatial relocation 
of natural vegetation. The extent of the climate 
influence is often difficult to determine, given 
that changes occur within interconnected 
physical and socioeconomic systems, and 
there is a lack of comprehensive observational 
evidence to support the development of 
predictive models, leaving a large degree of 
uncertainty related to these future changes 
(Ch. 17: Complex Systems). Models can be 
used to demonstrate how climate change may 
impact the production of a given agricultural 
commodity and/or suggest a change in land 
use (for example, econometric models, 
global gridded crop models, and integrated 
assessment models). However, the true impact 
may be mitigated by the influence of global 
economic markets, a shift to a different crop 
that is better suited to the new climate pattern, 
technological innovations, policy incentives, 
or capital improvement projects. This area of 
integrated, multidisciplinary scientific research 
is just emerging. 

Important feedbacks with agriculture are 
anticipated under changing climate conditions. 
Recent trends show a shift from dryland farm-
ing to irrigated agriculture throughout much of 
the Great Plains region (Ch. 22: N. Great Plains; 
Ch. 23: S. Great Plains).117 Future projections 
suggest that cropland suitability may increase 
at higher latitudes128 and that croplands could 
shift to livestock grazing southward.126 For 
high-latitude regions, climate change could 
result in a large-scale transformation from 
naturally vegetated ecosystems to agrono-
my-dominated systems. Climate warming also 
could result in a shift from higher-productivity 
systems (such as irrigated agriculture) to 
lower-productivity systems (such as dryland 
farming).129 Due to the globally interconnected 
nature of agricultural systems, climate change 
has broad implications for food security (Ch. 
16: International).130 Energy policies have also 
influenced the type and location of agricultural 
activities; for example, nearly two-thirds of 
recent land area converted for energy use 
was due to biofuel expansion34,131 mandated by 
the Energy Independence and Security Act 
of 2007.30,131 By 2040, the total new land area 
impacted by energy development could exceed 
an area the size of Texas—2,700 square miles 
per year,34 which is more than two times higher 
than the historical rate of urbanization.2 

Natural disturbances such as wildfires can 
trigger changes in land cover that have the 
potential to result in a permanent land-cover 
conversion. Over the past several decades, 
drought,132 climate warming, and earlier spring 
snowmelt have led to an increase in fire activi-
ty across the United States (Ch. 6: Forests),18,133 
although the burnt area increase may be partly 
due to changes in fire suppression policies.134 
Under future warming scenarios (that is, 
A1B, as described here: http://www.ipcc.ch/
ipccreports/sres/emission/index.php?idp=3), 
the burnt area in southwestern California could 
double by 2050 and increase by 35% in the 
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Sierra Nevada due to an increase in the length 
of the fire season and an increase in warmer 
and drier days.135 Human activity will continue 
to play an important role in wildfire frequency 
and intensity. Hot spots of fire activity were 
identified at the wildland–urban interface,136 
and urbanization is expected to increase fire 
hazard exposure to people and property. Land 
management strategies, such as prescribed 
burning, fuel reduction and clearing, invasive 
species management, and forest thinning, have 
the potential to mitigate wildland fire and its 
associated consequences,137 but more research 
is needed to evaluate their efficacy across a 
range of spatial and temporal scales.

Current relationships between plant species 
and climate variables138 have been used to 
estimate potential changes in the geographic 
distribution of species and vegetation under 
future climate conditions.12,139,140,141,142,143 Studies 
have projected the conversion of forests to 
shrubland and grassland across some areas of 
the western United States due to increasing 
aridity, pest outbreaks, and fire, resulting 
in a substantial transfer of carbon from the 
biosphere to the atmosphere.144,145 For example, 
increases in mountainous forests and grass-
lands at the expense of alpine and subalpine 
communities have been projected.146 Across 
North America, projected changes include an 

expansion of tropical dry deciduous forests 
and desert shrub/scrub biomes, a poleward 
migration of deciduous and boreal forests, 
and an expansion of grasslands at the expense 
of high-latitude taiga and tundra communi-
ties.12,144,146,147,148,149 However, it is important to 
note that projecting the future distributions of 
vegetation and land cover is highly complex, 
driven not only by changes in climate but 
also land-use changes, shifts in disturbance 
regimes, interactions between species, and 
evolutionary changes.150
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Traceable Accounts

Process Description
Chapter authors developed the chapter through technical discussions, literature review, and 
expert deliberation via email and phone discussions. The authors considered feedback from 
the general public, the National Academies of Sciences, Engineering, and Medicine, and federal 
agencies. For additional information about the overall process for developing the report, see 
Appendix 1: Process. 

The topic of land-use and land-cover change (LULCC) overlaps with numerous other national sec-
toral chapters (for example, Ch. 6: Forests; Ch. 10: Ag & Rural; Ch. 11: Urban) and is a fundamental 
characteristic of all regional chapters in this National Climate Assessment. This national sectoral 
chapter thus focuses on the dynamic interactions between land change and the climate system. 
The primary focus is to review our current understanding of land change and climate interactions 
by examining how land change drives changes in local- to global-scale weather and climate and 
how, in turn, the climate drives changes in land cover and land use through both biophysical and 
socioeconomic responses. Where possible, the literature cited in this chapter is specific to chang-
es in the United States. 

Key Message 1 
Land-Cover Changes Influence Weather and Climate

Changes in land cover continue to impact local- to global-scale weather and climate by altering 
the flow of energy, water, and greenhouse gases between the land and the atmosphere (high 
confidence). Reforestation can foster localized cooling (medium confidence), while in urban 
areas, continued warming is expected to exacerbate urban heat island effects (high confidence).

Description of evidence
The Land-Use and Climate, IDentification of robust impacts (LUCID) project88,151 evaluated climate 
response to LULCC using seven coupled land surface models (LSMs) and global climate models 
(GCMs) to determine effects that were larger than model variability and consistent across all 
seven models. Results showed significant discrepancies in the effect of LULCC (principally, the 
conversion of forest to cropland and grassland at temperate and higher latitudes) on near-surface 
air temperatures; the discrepancies were mainly attributable to the modeling of turbulent flux 
(sensible heat [the energy required to change temperature] and latent heat [the energy needed 
to change the phase of a substance, such as from a liquid to a gas]). Land surface models need to 
be subjected to more rigorous evaluations151,152 and evaluate more than turbulent fluxes and net 
ecosystem exchange.152 Rigorous evaluations should extend to the parameterization of albedo,153 
including the effect of canopy density on the albedo of snow-covered land;154 the seasonal 
cycle of albedo related to the extent, timing, and persistence of snow;155 and the benchmarking 
of the effect of present-day land cover change on albedo.156 More recently, there is consistent 
modeling and empirical evidence that forests tend to be cooler than nearby croplands and 
grasslands.91,92,93,95,96,156
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The study of the influence of wildland fire on climate is at its advent and lacks a significant 
knowledge base.98,99 Improved understanding would require more research on the detection of 
fire characteristics;157 fire emissions;158 and the relative roles of greenhouse gas (GHG) emissions, 
aerosol emissions, and surface albedo changes in climate forcing.98 

The urban heat island (UHI) is perhaps the most unambiguous documentation of anthropogenic 
modification of climate.159 Two studies have found that the stunning rate of urbanization in China 
has led to regional warming,105,106 which is consistent with the observation that land-use and 
land-cover changes must be extensive for their effects to be realized.87 Research on the effects 
of urbanization on precipitation patterns has not produced consistent results.113,114 Uncertainties 
related to the effect of urban areas on precipitation arise from the interactions among the UHI, 
increased surface roughness (for example, tall buildings), and increased aerosol concentrations.160 
In general, UHIs produce updrafts that lead to enhanced precipitation either in or downwind 
of urban areas, whereas urban surface roughness and urban aerosol concentrations can either 
further contribute to or dampen the updrafts that arise from the UHI.160

Major uncertainties 
Land use and land cover are dynamic; therefore, climate is influenced by a constantly changing 
land surface. Considerable uncertainties are associated with land-cover and land-use monitoring 
and projection.161,162,163,164 Land-cover maps can be derived from remote sensing approaches, but 
comprehensive approaches are typically characterized by coarse temporal resolution.2,3,59,60 More 
recently, remote sensing has enabled annual classification over large areas (national and global), 
though these efforts have been centered on a single land cover or disturbance type.68,165,166 Com-
prehensive multitemporal mapping of land use is even more limited and is a source of consider-
able uncertainty in understanding land change and feedbacks with the climate system. Deforesta-
tion, urbanization, wildland fire, and irrigated agriculture are the main land-use and land-cover 
changes that influence climate locally and regionally throughout the United States. Deforestation 
is likely to behave as a warming agent throughout most of the United States, but higher confi-
dence in this finding would require more research on how to treat sensible and latent heat fluxes 
in coupled GCM–LSM models; the relationship of albedo to forest density in the presence of snow; 
the timing, persistence, and extent of snow cover; and real-world comparisons of the response 
of albedo to land-cover change. Urbanization constitutes a continued expansion of the UHI 
effect, increasing warming at local scales. Determining the effect of urbanization on precipitation 
patterns and storm tracks would require extensive, additional research. Tabular irrigation water 
volume estimates, such as those provided by the U.S. Department of Agriculture’s (USDA) Farm 
and Ranch Irrigation Survey, must be translated into maps so that the data can be input in GCMs 
and LSMs to determine the impact of irrigation on climate. Current translation schemes do not 
provide consistent model output.124 The effect of wildland fires on climate processes is an emerg-
ing issue for which there is little research. Fire releases carbon dioxide (CO2) and other GHGs to 
the atmosphere, which, along with a decreased albedo, should promote warming. These warming 
effects, however, may be counterbalanced by the release of aerosols to the atmosphere and 
enhanced carbon sequestration by forest regrowth.99 
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Description of confidence and likelihood
There is medium confidence that deforestation throughout much of the continental United States 
promotes climate warming through a decrease in carbon sequestration and reduced transpiration. 
There is low confidence that wildland fires will impact climate, because many of the associated 
processes and characteristics produce counteracting effects. There is high confidence that 
urbanization produces local-scale climate change, but there is low confidence in its influence on 
precipitation patterns. There is high confidence that surface air temperature is reduced near areas 
of irrigated agriculture and medium confidence that downwind precipitation is increased.

Key Message 2 
Climate Impacts on Land and Ecosystems 

Climate change affects land use and ecosystems. Climate change is expected to directly and 
indirectly impact land use and cover by altering disturbance patterns (medium confidence), 
species distributions (medium confidence), and the suitability of land for specific uses (low 
confidence). The composition of the natural and human landscapes, and how society uses the 
land, affects the ability of the Nation’s ecosystems to provide essential goods and services (high 
confidence).  

Description of evidence
Much of the research assessing the impact of climate change on agriculture has been undertaken 
as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP),128 which has 
been understandably focused on productivity and food security.128,129,167,168,169 Less effort has been 
devoted to understanding the impact of climate change on the spatial distribution of agriculture. 
Deryng et al. (2011)170 used one of the AgMIP crop models (PEGASUS) to show poleward and 
westward shifts in areas devoted to corn, soybean, and wheat production. Parker and Abatzoglou 
(2016)130 have reported a poleward migration of the USDA’s cold hardiness zones as a result of a 
warming climate. Several empirical studies have found an increase in wildland fires in the western 
United States over the last several decades,18,101,171 in which indicators of aridity correlate positively 
with the amount of area burned. Several studies have reported a decline in forest cover through-
out the western United States and project future declines due to a warming climate and increasing 
aridity, as well as the concomitant likely increase in pest outbreaks and fire.144,145,172,173,174 Several 
studies have also reported a poleward shift in the forest communities of the eastern United States, 
resulting primarily from CO2 enrichment in a warming and wetter environment.12,144,147,148,149,175

Major uncertainties 
Determining the impact of climate change on agriculture requires the integration of climate, crop, 
and economic models,176 each with its own sources of uncertainty that can propagate through the 
three models. Sources of uncertainty include the response of crops to the intermingled factors of 
CO2 fertilization, temperature, water, and nitrogen availability; species-specific responses; model 
parameterization; spatial location of irrigated areas; and other factors.129,169,177 The projection of 
recent empirical fire–climate relationships18,101,171 into the future introduces uncertainty, as the 
empirical results cannot account for future anthropogenic influences (for example, fire suppres-
sion management) and vegetation response to future fires.171,178 Similarly, process-based models 
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must account for vegetation response to fire, uncertainty in precipitation predictions from climate 
models, and spatiotemporal nonuniformity in human interactions with fire and vegetation.178 Many 
of the studies on climate-induced spatial migration of vegetation are based on dynamic global veg-
etation models, which are commonly based only on climate and soil inputs. These models aggre-
gate species characteristics that are not uniform across all species represented and are generally 
lacking ecological processes that would influence a species’ range shift.179,180,181,182,183 Considerable 
uncertainties are associated with land-cover and land-use monitoring and projection.161,162,163,164 
Land-cover maps can be derived from remote sensing approaches; however, comprehensive 
approaches are typically characterized by coarse temporal resolution.2,3,59,60 More recently, remote 
sensing has enabled annual classification over large areas (at national and global scales), but these 
efforts have been centered on a single land cover or disturbance type.68,165,166 Comprehensive mul-
titemporal mapping of land use is even more limited and is a source of considerable uncertainty in 
understanding land change and feedbacks with the climate system.

Description of confidence and likelihood
There is high confidence that climate change will contribute to changes in agricultural land use; 
however, there is low confidence in the direction and magnitude of change due to uncertainties in 
the capacity to adapt to climate change. There is high confidence that climate change will impact 
urbanization in coastal areas, where sea level rise will continue to have direct effects. There is 
medium confidence that climate change will alter natural disturbance regimes; however, land 
management activities, such as fire suppression strategies, are likely to be of equal or greater 
importance. There is low confidence that climate change will result in changes to land cover 
resulting from changes in species distribution environmental suitability.
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