
Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II

Our Changing Climate

An atmospheric river pours moisture into the western United States in February 2017.

Key Message 1

Observed Changes in Global Climate

Global climate is changing rapidly compared to the pace of natural variations in climate that have occurred throughout Earth's history. Global average temperature has increased by about 1.8°F from 1901 to 2016, and observational evidence does not support any credible natural explanations for this amount of warming; instead, the evidence consistently points to human activities, especially emissions of greenhouse or heat-trapping gases, as the dominant cause.

Key Message 2

Future Changes in Global Climate

Earth's climate will continue to change over this century and beyond. Past mid-century, how much the climate changes will depend primarily on global emissions of greenhouse gases and on the response of Earth's climate system to human-induced warming. With significant reductions in emissions, global temperature increase could be limited to 3.6°F (2°C) or less compared to preindustrial temperatures. Without significant reductions, annual average global temperatures could increase by 9°F (5°C) or more by the end of this century compared to preindustrial temperatures.

Key Message 3

Warming and Acidifying Oceans

The world's oceans have absorbed 93% of the excess heat from human-induced warming since the mid-20th century and are currently absorbing more than a quarter of the carbon dioxide emitted to the atmosphere annually from human activities, making the oceans warmer and more acidic. Increasing sea surface temperatures, rising sea levels, and changing patterns of precipitation, winds, nutrients, and ocean circulation are contributing to overall declining oxygen concentrations in many locations.

Key Message 4

Rising Global Sea Levels

Global average sea level has risen by about 7–8 inches (about 16–21 cm) since 1900, with almost half this rise occurring since 1993 as oceans have warmed and land-based ice has melted. Relative to the year 2000, sea level is very likely to rise 1 to 4 feet (0.3 to 1.3 m) by the end of the century. Emerging science regarding Antarctic ice sheet stability suggests that, for higher scenarios, a rise exceeding 8 feet (2.4 m) by 2100 is physically possible, although the probability of such an extreme outcome cannot currently be assessed.

Key Message 5

Increasing U.S. Temperatures

Annual average temperature over the contiguous United States has increased by $1.2^{\circ}F$ ($0.7^{\circ}C$) over the last few decades and by $1.8^{\circ}F$ ($1^{\circ}C$) relative to the beginning of the last century. Additional increases in annual average temperature of about $2.5^{\circ}F$ ($1.4^{\circ}C$) are expected over the next few decades regardless of future emissions, and increases ranging from $3^{\circ}F$ to $12^{\circ}F$ ($1.6^{\circ}-6.6^{\circ}C$) are expected by the end of century, depending on whether the world follows a higher or lower future scenario, with proportionally greater changes in high temperature extremes.

Key Message 6

Changing U.S. Precipitation

Annual precipitation since the beginning of the last century has increased across most of the northern and eastern United States and decreased across much of the southern and western United States. Over the coming century, significant increases are projected in winter and spring over the Northern Great Plains, the Upper Midwest, and the Northeast. Observed increases in the frequency and intensity of heavy precipitation events in most parts of the United States are projected to continue. Surface soil moisture over most of the United States is likely to decrease, accompanied by large declines in snowpack in the western United States and shifts to more winter precipitation falling as rain rather than snow.

Key Message 7

Rapid Arctic Change

In the Arctic, annual average temperatures have increased more than twice as fast as the global average, accompanied by thawing permafrost and loss of sea ice and glacier mass. Arctic-wide glacial and sea ice loss is expected to continue; by mid-century, it is very likely that the Arctic will be nearly free of sea ice in late summer. Permafrost is expected to continue to thaw over the coming century as well, and the carbon dioxide and methane released from thawing permafrost has the potential to amplify human-induced warming, possibly significantly.

Key Message 8

Changes in Severe Storms

Human-induced change is affecting atmospheric dynamics and contributing to the poleward expansion of the tropics and the northward shift in Northern Hemisphere winter storm tracks since 1950. Increases in greenhouse gases and decreases in air pollution have contributed to increases in Atlantic hurricane activity since 1970. In the future, Atlantic and eastern North Pacific hurricane rainfall and intensity are projected to increase, as are the frequency and severity of landfalling "atmospheric rivers" on the West Coast.

Key Message 9

Increases in Coastal Flooding

Regional changes in sea level rise and coastal flooding are not evenly distributed across the United States; ocean circulation changes, sinking land, and Antarctic ice melt will result in greater-than-average sea level rise for the Northeast and western Gulf of Mexico under lower scenarios and most of the U.S. coastline other than Alaska under higher scenarios. Since the 1960s, sea level rise has already increased the frequency of high tide flooding by a factor of 5 to 10 for several U.S. coastal communities. The frequency, depth, and extent of tidal flooding are expected to continue to increase in the future, as is the more severe flooding associated with coastal storms, such as hurricanes and nor'easters.

Key Message 10

Long-Term Changes

The climate change resulting from human-caused emissions of carbon dioxide will persist for decades to millennia. Self-reinforcing cycles within the climate system have the potential to accelerate human-induced change and even shift Earth's climate system into new states that are very different from those experienced in the recent past. Future changes outside the range projected by climate models cannot be ruled out, and due to their systematic tendency to underestimate temperature change during past warm periods, models may be more likely to underestimate than to overestimate long-term future change.